170,611 research outputs found

    Generalizing backdoors

    Get PDF
    Abstract. A powerful intuition in the design of search methods is that one wants to proactively select variables that simplify the problem instance as much as possible when these variables are assigned values. The notion of ā€œBackdoor ā€ variables follows this intuition. In this work we generalize Backdoors in such a way to allow more general classes of sub-solvers, both complete and heuristic. In order to do so, Pseudo-Backdoors and Heuristic-Backdoors are formally introduced and then applied firstly to a simple Multiple Knapsack Problem and secondly to a complex combinatorial optimization problem in the area of stochastic inventory control. Our preliminary computational experience shows the effectiveness of these approaches that are able to produce very low run times and ā€” in the case of Heuristic-Backdoors ā€” high quality solutions by employing very simple heuristic rules such as greedy local search strategies.

    Adaptive Parallel Iterative Deepening Search

    Full text link
    Many of the artificial intelligence techniques developed to date rely on heuristic search through large spaces. Unfortunately, the size of these spaces and the corresponding computational effort reduce the applicability of otherwise novel and effective algorithms. A number of parallel and distributed approaches to search have considerably improved the performance of the search process. Our goal is to develop an architecture that automatically selects parallel search strategies for optimal performance on a variety of search problems. In this paper we describe one such architecture realized in the Eureka system, which combines the benefits of many different approaches to parallel heuristic search. Through empirical and theoretical analyses we observe that features of the problem space directly affect the choice of optimal parallel search strategy. We then employ machine learning techniques to select the optimal parallel search strategy for a given problem space. When a new search task is input to the system, Eureka uses features describing the search space and the chosen architecture to automatically select the appropriate search strategy. Eureka has been tested on a MIMD parallel processor, a distributed network of workstations, and a single workstation using multithreading. Results generated from fifteen puzzle problems, robot arm motion problems, artificial search spaces, and planning problems indicate that Eureka outperforms any of the tested strategies used exclusively for all problem instances and is able to greatly reduce the search time for these applications

    Decomposition Based Search - A theoretical and experimental evaluation

    Full text link
    In this paper we present and evaluate a search strategy called Decomposition Based Search (DBS) which is based on two steps: subproblem generation and subproblem solution. The generation of subproblems is done through value ranking and domain splitting. Subdomains are explored so as to generate, according to the heuristic chosen, promising subproblems first. We show that two well known search strategies, Limited Discrepancy Search (LDS) and Iterative Broadening (IB), can be seen as special cases of DBS. First we present a tuning of DBS that visits the same search nodes as IB, but avoids restarts. Then we compare both theoretically and computationally DBS and LDS using the same heuristic. We prove that DBS has a higher probability of being successful than LDS on a comparable number of nodes, under realistic assumptions. Experiments on a constraint satisfaction problem and an optimization problem show that DBS is indeed very effective if compared to LDS.Comment: 16 pages, 8 figures. LIA Technical Report LIA00203, University of Bologna, 200

    Learning Classical Planning Strategies with Policy Gradient

    Get PDF
    A common paradigm in classical planning is heuristic forward search. Forward search planners often rely on simple best-first search which remains fixed throughout the search process. In this paper, we introduce a novel search framework capable of alternating between several forward search approaches while solving a particular planning problem. Selection of the approach is performed using a trainable stochastic policy, mapping the state of the search to a probability distribution over the approaches. This enables using policy gradient to learn search strategies tailored to a specific distributions of planning problems and a selected performance metric, e.g. the IPC score. We instantiate the framework by constructing a policy space consisting of five search approaches and a two-dimensional representation of the planner's state. Then, we train the system on randomly generated problems from five IPC domains using three different performance metrics. Our experimental results show that the learner is able to discover domain-specific search strategies, improving the planner's performance relative to the baselines of plain best-first search and a uniform policy.Comment: Accepted for ICAPS 201

    Model checking embedded system designs

    Get PDF
    We survey the basic principles behind the application of model checking to controller verification and synthesis. A promising development is the area of guided model checking, in which the state space search strategy of the model checking algorithm can be influenced to visit more interesting sets of states first. In particular, we discuss how model checking can be combined with heuristic cost functions to guide search strategies. Finally, we list a number of current research developments, especially in the area of reachability analysis for optimal control and related issues

    Deadline Constrained Cloud Computing Resources Scheduling through an Ant Colony System Approach

    Get PDF
    Cloud computing resources scheduling is essential for executing workflows in the cloud platform because it relates to both execution time and execution cost. In this paper, we adopt a model that optimizes the execution cost while meeting deadline constraints. In solving this problem, we propose an Improved Ant Colony System (IACS) approach featuring two novel strategies. Firstly, a dynamic heuristic strategy is used to calculate a heuristic value during an evolutionary process by taking the workflow topological structure into consideration. Secondly, a double search strategy is used to initialize the pheromone and calculate the heuristic value according to the execution time at the beginning and to initialize the pheromone and calculate heuristic value according to the execution cost after a feasible solution is found. Therefore, the proposed IACS is adaptive to the search environment and to different objectives. We have conducted extensive experiments based on workflows with different scales and different cloud resources. We compare the result with a particle swarm optimization (PSO) approach and a dynamic objective genetic algorithm (DOGA) approach. Experimental results show that IACS is able to find better solutions with a lower cost than both PSO and DOGA do on various scheduling scales and deadline conditions
    • ā€¦
    corecore