
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generalizing backdoors

Citation for published version:
Rossi, R, Prestwich, S, Tarim, SA & Hnich, B 2008, 'Generalizing backdoors'. in Proceedings of the 5th
International Workshop on Local Search Techniques in Constraint Satisfaction (LSCS 2008). 5th
International Workshop on Local Search Techniques in Constraint Satisfaction (LSCS 2008), Sydney,
Australia, 14 September.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Preprint (usually an early version)

Published In:
Proceedings of the 5th International Workshop on Local Search Techniques in Constraint Satisfaction (LSCS
2008)

Publisher Rights Statement:
© Rossi, R., Prestwich, S., Tarim, S. A., & Hnich, B. (2008). Generalizing backdoors. In Proceedings of the 5th
International Workshop on Local Search Techniques in Constraint Satisfaction (LSCS 2008).

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28968667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/generalizing-backdoors(88908cf1-1293-452a-bada-5ac39dda817c).html


Generalizing Backdoors?

Roberto Rossi,1 Steven Prestwich,1 S. Armagan Tarim,2 and Brahim Hnich3

Cork Constraint Computation Centre - CTVR, University College, Cork, Ireland1

{r.rossi ,s.prestwich}@4c.ucc.ie
Department of Management, Hacettepe University, Ankara, Turkey2

armagan.tarim@hacettepe.edu.tr
Faculty of Computer Science, Izmir University of Economics, Turkey3

brahim.hnich@ieu.edu.tr

Abstract. A powerful intuition in the design of search methods is that
one wants to proactively select variables that simplify the problem in-
stance as much as possible when these variables are assigned values.
The notion of “Backdoor” variables follows this intuition. In this work
we generalize Backdoors in such a way to allow more general classes
of sub-solvers, both complete and heuristic. In order to do so, Pseudo-
Backdoors and Heuristic-Backdoors are formally introduced and then
applied firstly to a simple Multiple Knapsack Problem and secondly to
a complex combinatorial optimization problem in the area of stochas-
tic inventory control. Our preliminary computational experience shows
the effectiveness of these approaches that are able to produce very low
run times and — in the case of Heuristic-Backdoors — high quality solu-
tions by employing very simple heuristic rules such as greedy local search
strategies.

1 Introduction

A powerful intuition in the design of search methods is that one wants to proac-
tively select variables that simplify the problem instance as much as possible
when these variables are assigned values. The work presented in [22] follows this
intuition. One of the main contributions in this work is the notion of “Backdoor”
variables. This is a set of variables for which there is a value assignment such
that the simplified problem can be solved by a poly-time algorithm called the
“sub-solver”. This works aims to generalize the notion of “Backdoor” variables
by relaxing two assumptions that the sub-solver, as defined in [22], has to satisfy.

Firstly, we will relax the assumption stating that a sub-solver must be able
to “determine” the solution of a problem in polynomial time. Nevertheless we
will keep assuming that the sub-solver must reject in polynomial time an input
for which it cannot determine feasibility or infeasibility. A simple example on a
Multiple Knapsack Problem shows the effectiveness of this approach.
?

Roberto Rossi is supported by Science Foundation Ireland under Grant No. 03/CE3/I405 as
part of the Centre for Telecommunications Value-Chain-Driven Research (CTVR) and Grant No.
05/IN/I886. S. Armagan Tarim and Brahim Hnich are supported by the Scientific and Techno-
logical Research Council of Turkey (TUBITAK) under Grant No. SOBAG-108K027.



Secondly, we will relax the assumption of completeness for the sub-solver.
In this case the proposed framework will produce effective heuristic strategies
for solving complex problems in a structured way inspired by a divide et impera
logic. These strategies work as an aggregation of simple heuristic rules — such
as greedy local search procedures — coordinated by a search algorithm such
as depth-first search. Again we will apply this approach to the Multiple Knap-
sack Problem already discussed and we will show that in practice run times are
improved without sacrificing too much the optimality of the solution obtained.
This fact will also be supported by our computational experience on a complex
combinatorial optimization problem in the area of stochastic inventory control.

The work is structured as follows. In Section 2 we provide the required formal
background. In Section 3 we introduce the new concept of Backdoor-Condition.
In Section 4 we introduce Pseudo-Backdoors and Heuristic-Backdoors. In Section
5 we discuss an application to a complex combinatorial optimization problem in
the area of stochastic inventory control. In Section 6 we present related works
from the literature. Finally, in Section 7 we draw conclusions.

2 Formal Background

A Constraint Satisfaction Problem (CSP) is a triple 〈V, C,D〉, where V is a set
of decision variables, D is a function mapping each element of V to a domain
of potential values, and C is a set of constraints stating allowed combinations
of values for subsets of variables in V . A solution to a CSP is simply a set of
values of the variables such that the values are in the domains of the variables
and all of the constraints are satisfied. Often we want to find a solution to a CSP
that is optimal with respect to certain criteria. Let S be the solution set, that is
the set of all the tuples (d1, . . . , dk) ∈ D1 ×D2 × . . .×Dk that are solutions to
the CSP. A Constraint Optimization Problem (COP) is a CSP on the solution
set of which an objective function, f : S → R, has to be optimized. An optimal
solution to a COP is a solution to the CSP that is optimal with respect to f .

2.1 Constraint Programming

We now recall some key concepts in Constraint Programming (CP): constraint
filtering algorithm, constraint propagation and arc-consistency [17].

In CP a filtering algorithm is typically associated with every constraint. This
algorithm removes values from the domains of the variables participating in the
constraint that cannot belong to any solution of the CSP. These filtering algo-
rithms are repeatedly called until no new deduction can be made. This process is
called propagation mechanism. When no more domain reduction can be achieved
by iterating the process, we say that each constraint, and the CSP, are locally
consistent and that we have achieved a notion of local consistency on the con-
straints and the CSP. The term “local consistency” reflects the fact that the CSP
obtained through the discussed process is not globally consistent. It is instead
a CSP in which all the constraints are “locally”, i.e. individually, consistent. A



comprehensive discussion on the process of constraint propagation is given by
Apt [1]. If we demand that every domain value of every variable in the constraint
belongs to a solution to the constraint then what we achieve is hyper-arc consis-
tency, that is the strongest local consistency notion for a constraint. This still
does not guarantee a solution to the whole CSP because other constraints in it
are not considered in such a process.

In conjunction with this process CP uses a search procedure (like a back-
tracking algorithm) where filtering algorithms are systematically applied when
the domain of a variable is modified.

In CP constraints that capture a relation among a non-fixed number of vari-
ables are called global constraints [17]. These constraints can be associated with
powerful filtering algorithms. Optimization-oriented global constraints embed an
optimization component, representing a proper relaxation of the constraint itself,
into a global constraint [11]. This component provides three pieces of informa-
tion: (a) the optimal solution of the relaxed problem; (b) the optimal value of
this solution representing an upper bound on the original problem objective
function; (c) a gradient function grad(V ,v), which returns for each variable-
value pair (V ,v) an optimistic evaluation of the profit obtained if v is assigned
to V . These pieces of information are exploited to perform cost-based filtering of
suboptimal values in the domains and for guiding the search.

2.2 Local Search

A neighborhood structure is a function N : S → 2S that assigns to every s ∈ S a
set of neighbors N (s) ⊆ S. N (s) is called the neighborhood of s. Without loss
of generality, we here restrict the discussion to minimization problems. A locally
minimal solution (or local minimum) with respect to a neighborhood structure
N is a solution ŝ such that ∀s ∈ N (ŝ) : f(ŝ) ≤ f(s). We call ŝ a strict locally
minimal solution if ∀s ∈ N (ŝ) : f(ŝ) < f(s). Local search (LS) algorithms
for COPs start from some initial solution and iteratively try to replace the
current solution by a better solution in an appropriately defined neighborhood
of the current solution. In this process it is extremely important to achieve a
proper balance between diversification and intensification of the search. The term
diversification generally refers to the exploration of the search space, whereas
the term intensification refers to the exploitation of the accumulated search
experience. Among the most popular local search strategies we recall the Iterative
Improvement, or Hill Climbing, in which each move is only performed if the
resulting solution is better than the current solution and the algorithm stops as
soon as it finds a local minimum. Tabu Search is a more advanced strategy, in
fact it is among the most cited and used. Tabu search explicitly uses the history
of the search, both to escape from local minima and to implement an explorative
strategy. Iterated Local Search and Variable Neighborhood Search constitute other
examples of local search strategies. For a comprehensive survey on local search
and metaheuristic strategies the reader may refer to [5].



2.3 Hidden Structures: Backdoors

A powerful intuition in the design of search methods is that one wants to proac-
tively select variables that simplify the problem instance as much as possible
when these variables are assigned values. This intuition leads to the common
heuristic of branching on the most constrained variable first.

In [22] the authors discuss a formal framework inspired by these techniques
and present rigorous complexity results that support their effectiveness. One of
the main contributions in this work is the notion of “Backdoor” variables. This
is a set of variables for which there is a value assignment such that the simpli-
fied problem can be solved by a poly-time algorithm called the “sub-solver”. In
addition, the notion of “Strong Backdoor” is introduced, this is a set of vari-
ables for which any assignment leads to a poly-time solvable subproblem. Let us
summarize which properties this algorithm should satisfy. A sub-solver A given
as input a CSP, C: (i) either rejects the input C, or “determines” C correctly
(as unsatisfiable or satisfiable), returning a solution if satisfiable; (ii) runs in
polynomial time; (iii) can determine if C is trivially true (has no constraints) or
trivially false (has a contradictory constraint); (iv) if A determines C, then for
any variable x and value v, then A determines the simplified CSP where x is
assigned to v.

We use the notation C[v/x] to denote the simplified CSP obtained from a
CSP, C, by setting the value of variable x to value v. Let aS : S ⊆ V → D be
a partial assignment. We use C[aS ] to denote the simplified CSP obtained by
setting the variables defined in aS .

Definition 1 (Backdoor [22]). A nonempty subset S of the variables is a
Backdoor in C for A if for some as : S → D, A returns a satisfying assignment
of C[aS ].

Intuitively, the Backdoor corresponds to a set of variables, such that when
set correctly, the sub-solver can solve the remaining problem. In a sense, the
Backdoor is a “witness” to the satisfiability of the instance, given a sub-solver
algorithm. The authors also introduced a stronger notion of the Backdoor to
deal with both satisfiable and unsatisfiable (inconsistent) problem instances.

Definition 2 (Strong Backdoor [22]). A nonempty subset S of the variables
is a strong Backdoor in C for A if for all as : S → D, A returns a satisfying
assignment or concludes unsatisfiability of C[aS ].

A Strong Backdoor S is sufficient for solving a problem. This means if S is
relatively small, one obtains a large improvement over searching the full space
of variable/value assignments. Furthermore Backdoors can be exploited to dy-
namically switch the propagation logic and achieve a higher level of consistency
during the search.

Example 1. Let us consider the following CSP=〈V, C,D〉:
V ≡ {X1, X2, ..., Xm, N},
D ≡ {X1, X2, ..., Xm, N ∈ {1, . . . ,m}},



C ≡ {NValue([X1, X2, ..., Xm], N), N = m}.
We recall that the NValue constraint requires that variables X1, X2, ..., Xm are
assigned N different values. Propagating the NValue constraint is NP-hard [4]
and thus its propagator, which we shall call P , does not achieve hyper-arc con-
sistency since this would be computationally too expensive. Nevertheless it is
clear that in the given CSP, once constraint N = m is propagated, constraint
NValue([X1, X2, ..., Xm], N) becomes equivalent to allDiff([X1, X2, ..., Xm]),
which requires the m decision variables to be all assigned different values from
their domains and for which an efficient way of achieving hyper-arc consistency
exists. Therefore, let A be the poly time algorithm that achieves hyper-arc con-
sistency for allDiff, then N → m is a Backdoor with respect to A. In practice,
this implies that we can create a new constraint DNValue (Dynamic NValue) able
to switch the propagation logic from P to A as soon as the assignment N → m
(Backdoor) is detected.

In this regard an interesting discussion is carried on in [3], where the parame-
terized complexity of global constraints is discussed.

3 Backdoor Conditions

We now define an important concept that will be employed throughout all the
rest of this work. In the previous section we provided the formal definition for
Backdoors and Strong Backdoors. We have also seen that a given sub-solver A
must run in polynomial time and must reject (in polynomial time) the input if it
is not able to either conclude satisfiability or unsatisfiability. In other words, the
sub-solver must be able to check in polynomial time a “condition” that states if it
can or it cannot solve the problem of assigning the remaining decision variables.
We shall call this condition Backdoor Condition, formally defined as follows:

Definition 3 (Backdoor Condition). Given a CSP, C, a Backdoor Condi-
tion with respect to a sub-solver A is a (global) constraint P on the subset S ⊆ V
of the decision variables in C that are currently instantiated, such that if the par-
tial assignment aS : S ⊆ V → D satisfies P , then aS is a Backdoor in C for A.
Determining if aS satisfies P must be performed in polynomial time.

Obviously we do not differentiate between Backdoor Condition and Strong
Backdoor Condition, in fact it is easy to note that, if the set of variables S that
are currently instantiated is a Strong Backdoor, P will be simply satisfied by
any assignment. In contrast, if a specific partial assignment aS is a Backdoor,
then P will be satisfied by aS but not by other partial assignments that are not
Backdoors. Once the structure of the remaining subproblem has been revealed,
dedicated strategies can be adopted to cope with it. The following section de-
scribes two possible directions.



4 Hidden Structures: Pseudo-Backdoors and
Heuristic-Backdoors

Having an efficient (polynomial) algorithm for handling a subproblem that arises
when some of the decision variables are fixed is indeed desirable. Nevertheless,
often it may be the case that, after some decision variables have been fixed,
the remaining subproblem is still NP-hard, but it has some additional structure
that the original problem does not have. If this is the case, it is possible that
specialized algorithms, such as dedicated propagators or heuristic procedures,
may be able to exploit this additional structure in order to either achieve a
stronger filtering or quickly produce promising or optimal assignments for all or
some of the remaining decision variables.

4.1 Pseudo-Backdoors

If we relax assumption (ii) for A, we may accept sub-solvers having an expo-
nential worst-case run time required to “determine” a solution for the CSP.
Nevertheless the sub-solver should still be able to reject the input in polynomial
time if satisfiability or unsatisfiability cannot be inferred. The key idea then
is that, although a given sub-solver is not guaranteed to produce a solution in
polynomial time, it should be able to produce competitive run times in practice.
This intuition directly leads to the notion of Pseudo-Backdoor. We consider a
sub-solver Â that is able to reject an input in polynomial time, but that may
require exponential time to “determine” a solution for the CSP or to conclude
unsatisfiability.

Definition 4 (Pseudo-Backdoor). A nonempty subset S of the variables is
a Pseudo-Backdoor in C for Â if for some as : S → D, Â returns a satisfying
assignment of C[aS ] or concludes unsatisfiability of C[aS ].

Definition 5 (Strong Pseudo-Backdoor). A nonempty subset S of the vari-
ables is a Strong Pseudo-Backdoors in C for Â if for all as : S → D, Â returns
a satisfying assignment or concludes unsatisfiability of C[aS ].

Particularly important is now the concept of Pseudo-Backdoor Condition:

Definition 6 (Pseudo-Backdoor Condition). Given a CSP, C, a Pseudo-
Backdoor Condition with respect to a sub-solver Â is a (global) constraint P on
the subset S ⊆ V of the decision variables in C that are currently instantiated,
such that if the partial assignment aS : S ⊆ V → D satisfies P , then aS is a
Pseudo-Backdoor in C for Â. Determining if aS satisfies P must be performed
in polynomial time.

Example 2. We consider a multiple knapsack problem with two bins into which
objects can be fitted. A set of objects is given, for each object a profit and a
weight are also given. Each bin is assigned a certain capacity. We want to fit
as many objects as possible in the bins in such a way to maximize profit and



Items KP-DFS KP-DFS-DP

10 0.02 0.03
15 0.45 0.04
20 14 0.100
25 210 0.270

Table 1. Multiple Knapsack Problem. Comparison between the run times (in seconds)
of a pure depth-first search strategy (KP-DFS) and of the hybrid depth-first/dynamic
programming search strategy based on the Pseudo-Backdoor discussed (KP-DFS-DP).

to not exceed the capacity available for each bin. A simple observation directly
leads to an effective Pseudo-Backdoor Condition. As soon as the objects fitted in
one of the two containers occupy enough capacity so that none of the remaining
objects can be fitted in it, the remaining problem is then to fit the unassigned
objects to a “virtual bin” having a capacity equal to the residual capacity of
the other bin. Once a given partial assignment aS satisfies the Pseudo-Backdoor
Condition described, the remaining problem is obviously a simple 0-1 Knapsack.
If we employ a generic depth-first search strategy to solve the original problem,
once reached the node corresponding to aS , we can either continue exploring
the search space using this strategy, or switch to a more efficient Dynamic Pro-
gramming approach [15] for solving the remaining 0-1 Knapsack problem and
returning the optimal solution with respect to the partial assignment aS . Both
the approaches have a worst case exponential run time, but in practice the dy-
namic programming approach will outperform a simple depth-first search by
orders-of-magnitude. In Table 1 we compare the performance of a pure depth-
first search strategy versus that of a hybrid depth-first/dynamic programming
strategy based on the Pseudo-Backdoor described. All the experiments presented
in this work have been performed on an Intel(R) Centrino(TM) CPU 1.50GHz
with 2Gb RAM. The problem parameters are: bin capacities 500 and 1500; item
profits and weights generated randomly and uniformly distributed respectively
in [0,200] and [0,500]. We considered four instances comprising 10, 15, 20, and
25 items respectively. As the computational times witness, the hybrid approach
scales particularly well.

4.2 Heuristic-Backdoors

Another requirement we could relax for a given sub-solver A is completeness.
This means that the sub-solver may adopt a heuristic strategy.

In CSPs the former observation leads to the following approach:

– A solution method in which the sub-solver is used for heuristically produce
a feasible assignment for some or all the remaining decision variables.

In COPs the former observation can lead to two different approaches:



– A complete solution method in which the heuristic sub-solver is used to
generate a near-optimal solution that provides a good bound during the
search. This approach is typically used in branch and bound algorithms [13].

– A heuristic solution method in which the heuristic sub-solver is used for
assigning “promising” values to some or all the remaining decision variables.

More formally, a heuristic sub-solver Ã given as input a CSP, C, either rejects
the input C in polynomial time, or “may induce” a (partial) assignment on it; if
Ã “may induce” a (partial) assignment on C, then for any variable x and value
v, then Ã “may induce” a (partial) assignment on the simplified CSP where x
is assigned to v. In order to clarify, “may induce” means that the sub-solver
will actually induce an assignment if the heuristic strategy employed is able
to produce such an assignment within the given time/runs limit, otherwise the
sub-solver will simply reject the input. In fact, in contrast to a sub-solver A
associated with a (Strong) Backdoor, Ã is not required to run in polynomial
time and does not necessarily have to return a feasible assignment.

Definition 7 (Heuristic-Backdoor). A nonempty subset S of the variables
is a Heuristic-Backdoor in C for Ã if for some as : S → D, Ã may return a
feasible assignment for C[aS ].

Definition 8 (Strong Heuristic-Backdoor). A nonempty subset S of the
variables is a Strong Heuristic-Backdoor in C for Ã if for all as : S → D, A
may return a feasible assignment for C[aS ].

A (Strong) Heuristic-Backdoor S is not always sufficient for heuristically solv-
ing a problem. Nevertheless if S is relatively small and if the heuristic strategy
is successful, one may obtain a large improvement over searching the full space
of variable/value assignments.

Definition 9 (Heuristic-Backdoor Condition). Given a CSP, C, a Heuristic-
Backdoor Condition with respect to a heuristic sub-solver Ã is a (global) con-
straint P on the subset S ⊆ V of the decision variables in C that are currently
instantiated, such that if the partial assignment aS : S ⊆ V → D satisfies P ,
then aS is a Heuristic-Backdoor in C for Ã. Determining if aS satisfies P must
be performed in polynomial time.

(Strong) Heuristic-Backdoors are particularly suitable for developing struc-
tured ways of heuristically solving complex problems. In what follows we will
show that using this novel concept it is possible to develop effective heuristic
approaches to complex combinatorial optimization problems by employing very
simple heuristic strategies, such as Hill Climbing procedures. The main reason
for this is that, by using tree search, the original problem is split into much
smaller problems. On these smaller problems simple heuristic rules such as iter-
ative improvement often produce high quality assignments in almost no time.

Example 3. Let Ã be a simple Greedy algorithm for solving 0-1 Knapsack prob-
lems [15]. In this algorithm objects are ordered by decreasing profit over weight.



Items KP-DFS KP-DFS-DP KP-DFS-LS % of real optimum

10 0.02 0.03 <0.001 100
15 0.45 0.04 <0.001 97.9
20 14 0.100 0.01 100
25 210 0.270 0.02 99.2

Table 2. Multiple Knapsack Problem. Comparison between the run times (in seconds)
of a pure depth-first search strategy (KP-DFS), of the hybrid depth-first/dynamic
programming search strategy based on the Pseudo-Backdoor discussed (KP-DFS-DP),
and of the hybrid depth-first/local search strategy based on the Heuristic-Backdoor
discussed (KP-DFS-LS). % of real optimum denotes the fraction (in percentage) of the
optimum profit achieved by the heuristic approach.

Once ordered, objects are scanned sequentially and put into the knapsack if the
residual capacity allows the insertion. This can be seen as a simple Hill Climbing
strategy in which at each step we perform an “improving” move (insertion of an
object in the bin) until a local maximum is achieved (no more objects can be fit
in the bin). In the former Example 2 the Pseudo-Backdoor Condition described
incidentally is also a Heuristic-Backdoor Codition with respect to this Greedy
algorithm Ã. Thus as soon as this condition is met by a given partial assignment
aS the remaining subproblem can be solved in a heuristic way by using Ã. In Ta-
ble 2 we refer to the same test bed discussed in Example 2, but now we complete
the overall picture by showing the performance of the new heuristic approach
based on the greedy algorithm discussed (KP-DFS-LS). The run times and the
discrepancies from the real optima clearly show that the heuristic approach is
able to speed up the search without sacrificing too much in terms of optimality.

5 An Application to Stochastic Inventory Control

In this section we will provide a high level description of an application for
Heuristic-Backdoors to a complex combinatorial optimization problem in inven-
tory control. We firstly provide a description of the problem; secondly we propose
a possible heuristic strategy Ã; thirdly we identify a valid Heuristic-Backdoor
Condition, that is a valid constraint that a given partial assignment for decision
variables has to satisfy in order to be a Heuristic-Backdoor with respect to the
given heuristic strategy Ã; and finally the overall architecture combining the CP
and the LS algorithms is presented and computational results are provided for
a set of instances.

Notation and terminology We shall now introduce some important termi-
nology concerning inventory control policies. In inventory control, when demand
is probabilistic, it is useful to conceptually categorize inventories as follows:



– On-hand stock: This is stock that is physically on the shelf; it can never
be negative. This quantity is relevant in determining whether a particular
customer demand is satisfied directly from the shelf

– Backorders: These denote an existing demand that cannot be fulfilled since
no stock is available on the shelf

– On order: These are stocks which have been ordered, but that for some
reason have not reached the shelf yet. Reasons for this may comprise: stock
inspection, transportation etc.

– Net inventory = (On hand) - (Backorders)

This quantity can become negative (namely, if there are backorders). It
is used in some mathematical derivations and is also a component of the
following important definition

– Inventory position: The inventory position is defined by the relation

Inventory position = (On hand) + (On order) - (Backorders).

5.1 Problem Description

We consider a finite planning horizon of N periods and a demand dt for each pe-
riod t ∈ {1, . . . , N}, which is a random variable with probability density function
gt(dt). We assume that the demand occurs instantaneously at the beginning of
each time period. The demand we consider is non-stationary, that is it can vary
from period to period, and we also assume that demands in different periods are
independent. A stochastic lead time lt with probability mass function ft(lt) for
an order placed in period t ∈ {1, ..., N} is given. Note that {lt} are mutually
independent and each of them is also independent of the respective order quan-
tity. A fixed delivery cost a is incurred for each order. A linear holding cost h is
incurred for each unit of product carried in stock from one period to the next.
We assume that it is not possible to sell back excess items to the vendor at the
end of a period and that negative orders are not allowed, so that if the actual
stock exceeds the order-up-to-level for that review, this excess stock is carried
forward and not returned to the supply source. However, such occurrences are
regarded as rare events and accordingly the cost of carrying excess stocks and
the positive effect on the service level of subsequent periods is ignored. As a
service level constraint we require the probability that at the end of each and
every period the net inventory will not be negative set to be at least a given
value α. Our aim is to minimize the expected total cost, which is composed of
ordering costs, unit costs and holding costs, over the N -period planning horizon,
satisfying the service level constraints.

A chance-constrained programming formulation for this problem is given in
[18]. This formulation can be tailored to incorporate the inventory control policy
adopted. For instance we may adopt the “replenishment cycle policy”, which is
equivalent to Bookbinder-Tan’s “static-dynamic uncertainty strategy” [6]. The
replenishment cycle policy is static in the sense that the replenishment periods
are determined once and for all at the beginning of the planning horizon, and



dynamic as the order quantities are decided only after observing the realized
demand in the periods before a given replenishment.

Under the replenishment cycle policy the problem is then to decide the
optimal order periods, which we may denote using binary decision variables
δ1, . . . , δN , where δi = 1 iif an order is scheduled in period i ∈ 1, . . . , N , and the
respective optimal “order-up-to-positions” that is the level to which the inven-
tory position has to be raised by each order.

As shown in [18] a complex expression involving a number of ordering de-
cisions and order-up-to-positions must be evaluated1 in order to compute the
service level α provided at a given period i. Specifically, let a replenishment cy-
cle be the time span between two consecutive replenishments, the relation to
compute the service level at a given period i will involve the minimum set of for-
mer consecutive replenishment cycles spanning over L+1 periods, where L is the
maximum possible lead time length (Fig. 1). We will not discuss this expression
in details and we will assume that this is given as a black box.

5.2 A Simple Hill Climbing Procedure

Assume that a set of consecutive

ii-1i-L

in
v
e
n
to

ry
 p

o
s
it
io

n

periods

Replenishment Cycles

L+1 periods

Fig. 1. Replenishment Cycles corre-
sponding to the following partial as-
signment for replenishment decisions:
δi−L−1 = 1, δi−L = 0, δi−L+1 = 1,
δi−L+2 = 0, δi−L+3 = 0, δi−1 = 1,
δi = 0. Since at least L periods before
period i are covered by this set of con-
secutive cycles it is possible to determine
the service level at period i.

replenishment cycles is given, cover-
ing L + 1 or more periods. This can
be seen as a partial assignment for de-
cision variables δi. If no order-up-to-
position is associated with each of the
replenishment cycles identified, in or-
der to compute “good” order-up-to-
positions such that the service level
provided at the end of the last replen-
ishment cycle is at least α we may
adopt the following greedy approach.

We initially associate with each
replenishment cycle an order-up-to-
position of 0. The service level pro-
vided will be in this case extremely
low. We now start increasing of one
unit the most promising order-up-to-
position, that is the one that, once

increased, produces the maximum increase with respect to the service level pro-
vided at the end of the last replenishment cycle. We proceed increasing at each
step the most promising order-up-to-position for the replenishment cycles of in-
terest until the service level provided at the end of the last replenishment cycle
is at least α.
Example 4. Consider again the example in Fig. 1. Assume that x is the current
order-up-to-level for the cycle covering periods i − L − 1 and i − L, y is the
current order-up-to-level for the cycle covering periods i− L + 1, i− L + 2 and
i − L + 3, finally z is the order-up-to-level for the cycle covering periods i − 1
1 Note that the evaluation requires polynomial time



and i. Initially x = 0, y = 0, z = 0. The complex expression discussed above to
compute the service level at period i can be used since at least L + 1 periods
are covered. Assume that, after a number of steps performed by the greedy
approach discussed, this expression states that the current set of order-up-to-
levels provides a service level of α − 0.05. Using the same expression we also
state that increasing x by one unit provides a service level of α+0.01, increasing
y by one unit provides a service level of α − 0.01 and increasing z by one unit
provides a service level of α− 0.02. Thus we choose the first option, we increase
x by one unit and we obtain an assignment for order-up-to-levels that satisfies
the required service level constraint at period i.

5.3 A Heuristic-Backdoor Condition

In our problem it is easy to see that a Heuristic-Backdoor with respect to the
greedy procedure just presented is a partial assignment for replenishment deci-
sions, δt, t = 1, . . . , N , such that for a given period i a sufficient number of former
replenishment cycles are identified — that is the replenishment cycles identified
cover at least periods from i−L to i. This provides a simple Heuristic-Backdoor
Condition that can be checked by the heuristic sub-solver in polynomial time.

Once a Heuristic-Backdoor has been identified by the sub-solver through
the described Heuristic-Backdoor Condition, it is possible to apply the greedy
approach in order to quickly find a good assignment for the respective order-up-
to-positions without resorting to a complete depth-first search procedure.

5.4 A Hybrid CP/LS Algorithm

We developed a CP model, following the structure of the CP approach in [18],
and we incorporated the heuristic strategy discussed in the form of a global
constraint. The model is quite simple. Let x̃ denote the expectation of a random
variable x.

min E{TC} =
N∑

t=1

(
a · δt + h · P̃t

)
(1)

subject to,

P̃t + d̃t − P̃t−1 > 0 ⇒ δt = 1 t = 1, . . . , N (2)

δt = 0 ⇒ P̃t + d̃t − P̃t−1 = 0 t = 1, . . . , N (3)

P̃t + d̃t − P̃t−1 ≥ 0 t = 1, . . . , N (4)

serviceLevel(δ1, . . . , δN ,

P̃1, . . . , P̃N ,

g1(d1), . . . , gN (dN ),
f(·), α)

(5)

P̃t ≥ 0, δt ∈ {0, 1} t = 1, . . . , N. (6)



Period (t) 1 2 3 4 5 6 7 8

d̃t 15 18 13 33 30 18 23 15

Table 3. Forecasts of period demands.

The objective function minimizes ordering (a) and holding (h) cost with respect
to the expected inventory position (P̃t) at the end of each period. The first three
constraints states the replenishment condition, the non-replenishment condition
and the inventory conservation rule. Constraint serviceLevel(. . .) dynamically
decides, in polynomial time, if a given partial assignment is a Heuristic-Backdoor
— i.e. if sufficient consecutive periods are covered so that order-up-to-levels can
be generated — and in such a case it fixes lower bounds for the corresponding
expected inventory positions by using the greedy approach described above.2

5.5 Cost-Based Filtering

In order to speed-up the search process we adopted the cost-based filtering strat-
egy for stochastic COPs discussed in [19]. In this work the authors propose an
expectation-based relaxation for part or all the random variables in the problem.
This relaxation produces a valid bound under some assumptions. Specifically,
we considered the simplified problem where the delivery lead-time is replaced
by its expected value. It can be proved that the model considered satisfies the
assumptions in [19]. As discussed in [18, 20] the resulting relaxed problem can
be solved very efficiently using the CP approach in [21]. Therefore we adopted
this relaxation in order to produce good bounds during the search process that
are exploited for filtering parts of the search tree that cannot lead to a better
solution.

5.6 Computational Experience

In this section we consider the same set of instances analyzed in [18]. Specifically,
we focus on the last two instances there discussed, in which a stochastic lead
time of 2 periods over an 8-period planning horizon is considered.

We assume an initial null inventory level and a normally distributed demand
with a coefficient of variation σt/d̃t = 0.3 for each period t ∈ {1, . . . , 8}. The
expected values {d̃t} for the demand in each period are listed in Table 3. The
other parameters are a = 30, h = 1, α = 0.95.

Firstly, we analyze a stochastic lead time with probability mass function
fi(t) = {0.2(0), 0.6(1), 0.2(2)}. That is an order is received immediately with
probability 0.2, after one period with probability 0.6, and after two periods with
2 Note that the minimum expected inventory position required to provide a service

level α at the end of a given period can be directly computed from the order-up-to-
position at the beginning of the cycle covering the period by subtracting the expected
demand from the beginning of the cycle and up to that period.



E{TC}: 532

Period (t) 1 2 3 4 5 6 7 8
Rt 50 72 101 88 79 72 54 31
δt 1 1 1 0 1 1 0 0
Shortage probability − − 5% 5% 3% 5% 5% 5%

Table 4. Optimal policy under stochastic lead time, fi(t) = {0.2(0), 0.6(1), 0.2(2)}, in
periods {1, 2} the inventory cannot be controlled. Rt is the opening-inventory-position
at period t, that is Rt = P̃t + d̃t.

probability 0.2. The optimal solution — obtained using the approach discussed
in [18] — is presented in Fig. 2, details about the optimal policy are reported in
Table 4. The number of replenishment cycles is 5. The policy parameters are:

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

Period

In
v

e
n

to
ry

 p
o

s
it

io
n

Fig. 2. Optimal policy under stochastic lead time, fi(t) = {0.2(0), 0.6(1), 0.2(2)}.

cycle lengths= [1, 1, 2, 1, 3] and order-up-to-positions= [50, 72, 101, 79, 72].
Secondly, we consider a different probability mass function for the lead time:

fi(t) = {0.5(0), 0.0(1), 0.5(2)}, which means that we maintain the same average
lead time of one period, but we increase its variance. The optimal solution is
presented in Fig. 3, details about the optimal policy are reported in Table 5.
The number of replenishment cycles is still 5, policy parameters are: cycle

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

Period

In
v

e
n

to
ry

 p
o

s
it

io
n

Fig. 3. Optimal policy under stochastic lead time, fi(t) = {0.5(0), 0.0(1), 0.5(2)}.

lengths= [1, 1, 2, 1, 3] and order-up-to-positions= [50, 72, 101, 79, 72]. Although



E{TC}: 562

Period (t) 1 2 3 4 5 6 7 8
Rt 53 79 107 94 87 72 54 31
δt 1 1 1 0 1 1 0 0
Shortage probability − − 5% 5% 0% 5% 5% 5%

Table 5. Optimal policy under stochastic lead time, fi(t) = {0.5(0), 0.0(1), 0.5(2)}. Rt

is the opening-inventory-position at period t, that is Rt = P̃t + d̃t.

the average lead time is still one period, order-up-to-positions are slightly higher
than in the former case where the variance of the lead time was lower. Also the
cost reflects this, in fact it is 5.6% higher than in the former case.

For both the instances discussed our heuristic approach achieves a consid-
erable improvement in terms or run time without sacrificing the quality of the
solution obtained.

The heuristic used for the selection of the variable is the usual min-domain/max-
degree heuristic. Decision variables have different priorities in the heuristic: the
δk have higher priority than the P̃k. The value selection heuristic chooses values
from the smallest to the largest.

For both the two instances presented the exact and the heuristic approaches,
in conjunction with the discussed cost-based filtering strategy, produce the same
solution, but while the exact approach in [18] requires more than one hour to
prove optimality for both the first and the second instance, our heuristic ap-
proach only requires respectively 5 and 6 seconds to complete the search pro-
cess. Also in this case the experiments have been performed on an Intel(R)
Centrino(TM) CPU 1.50GHz with 2Gb RAM.

6 Related Works

The concept of Backdoors has been originally introduced in [22]. Since then,
much of the work on Backdoors has been focused on SAT problems, see for in-
stance [14]. In [7] the authors propose an explanation-based approach exploiting
Backdoors for dynamically identifying and exploiting structures in CSPs. Nev-
ertheless, to the best of our knowledge, in the literature Bakdoors have not been
used so far for switching the search strategy either to a complete or incomplete
different strategy not necessarily polynomial (such as Dynamic Programming).

The integration of Operations Research and Constraint Programming tech-
niques for combinatorial optimization is a very active research field [12]; but
operations research techniques are typically employed for generating valid relax-
ations used for performing domain filtering and, with the exception of Bender’s
Decomposition in [7], they are not employed as alternative search strategies that
can take over the control of the search process when a given condition is met.

Finally, the integration between Constraint Programming and Local Search
has been discussed in a variety of works — the reader may refer to the review



in [10] — and it is an active research field [9]. Several ways of blending con-
straints with local search procedures have been discussed in the literature [2,
16]. In all these approaches the local search engine is used to “guide” the search,
while Constraint Programming is used for exploring promising neighborhood.
Alternatively, local search techniques can be introduced within a constructive
global search algorithm [8]. The technique we propose is of this second kind, but
the notion of Heuristic-Backdoor makes our approach novel and more general
compared to other specialized approaches presented in the literature.

7 Conclusions

We generalized Backdoors in such a way to allow sub-solvers that do not run
in polynomial time. This led to Pseudo-Backdoors and to Heuristic-Backdoors,
that let us switching the search logic (or the propagation logic of a given global
constraint) as soon as a known structure in the remaining subproblem that has
to be solved is revealed by a given partial assignment. While Pseudo-Backdoors
guarantee completeness in the search process, this is not the case when Heuristic-
Backdoors are employed. Heuristic-Backdoors in fact let the sub-solver employ
a heuristic strategy to produce a solution. We applied both Pseudo-Backdoors
and Heuristic-Backdoors to a simple Multiple Knapsack Problem taken as run-
ning example. We have also shown the effectiveness of Heuristic-Backdoors on a
complex combinatorial optimization problem. In future works we aim to extend
our computational experiments, that so far only present preliminary results, and
we aim to provide a detailed description of the case study in Section 5, for which
only a very high level description has been provided in this work.

References

1. K. Apt. Principles of Constraint Programming. Cambridge University Press, Cam-
bridge, UK, 2003.

2. B. De Backer, V. Furnon, P. Shaw, P. Kilby, and P. Prosser. Solving vehicle routing
problems using constraint programming and metaheuristics. Journal of Heuristics,
6(4):501–523, 2000.

3. C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, C.-G. Quimper, and T. Walsh. The
parameterized complexity of global constraints. In Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, 2008.

4. C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. Filtering algorithms
for the nvalue constraint. Constraints, 11(4):271–293, 2006.

5. C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Comput. Surv., 35(3):268–308, September 2003.

6. J. H. Bookbinder and J. Y. Tan. Strategies for the probabilistic lot-sizing problem
with service-level constraints. Management Science, 34:1096–1108, 1988.

7. H. Cambazard and N. Jussien. Identifying and exploiting problem structures using
explanation-based constraint programming. Constraints, 11(4):295–313, 2006.

8. A. Cesta, G. Cortellessa, A. Oddi, N. Policella, and A. Susi. A constraint-based
architecture for flexible support to activity scheduling. Lecture Notes in Computer
Science, 2175:369+, 2001.



9. B. Crawford, C. Castro, and E. Monfroy. Integration of constraint program-
ming and metaheuristics. In Ian Miguel and Wheeler Ruml, editors, Abstraction,
Reformulation, and Approximation, 7th International Symposium, SARA 2007,
Whistler, Canada, July 18-21, 2007, Proceedings, volume 4612 of Lecture Notes in
Computer Science, pages 397–398. Springer, 2007.

10. F. Focacci, F. Laburthe, and A. Lodi. Local Search and Constraint Programming.
In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, volume 57
of International Series in Operations Research and Management Science. Kluwer
Academic Publishers, Norwell, MA, 2002.

11. F. Focacci, A. Lodi, and M. Milano. Optimization-oriented global constraints.
Constraints, 7:351–365, 2002.

12. F. Focacci and M. Milano. Connections and integrations of dynamic programming
and constraint programming. In Proceedings of the International Workshop on
Integration of AI and OR techniques in Constraint Programming for Combinatorial
Optimization Problems CP-AI-OR 2001, 2001.

13. E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey. Operations
Research, 14(4):699–719, 1966.

14. I. Lynce and J. Marques-Silva. Hidden structure in unsatisfiable random 3-sat:
An empirical study. In ICTAI ’04: Proceedings of the 16th IEEE International
Conference on Tools with Artificial Intelligence, pages 246–251, Washington, DC,
USA, 2004. IEEE Computer Society.

15. S. Martello and P. Toth. Knapsack Problems. John Wiley & Sons, NY, 1990.
16. G. Pesant and M. Gendreau. A view of local search in constraint programming. In

Eugene C. Freuder, editor, Proceedings of the Second International Conference on
Principles and Practice of Constraint Programming, Cambridge, Massachusetts,
USA, August 19-22, 1996, volume 1118 of Lecture Notes in Computer Science,
pages 353–366. Springer, 1996.

17. J.-C Regin. Global Constraints and Filtering Algorithms. in Constraints and Integer
Programming Combined, Kluwer, M. Milano editor, 2003.

18. R. Rossi, S. A. Tarim, B. Hnich, and S. Prestwich. Computing replenishment
cycle policy under non-stationary stochastic lead time. Technical report, Cork
Constraint Computation Centre, 2008.

19. R. Rossi, S. A. Tarim, B. Hnich, and S. Prestwich. Cost-based domain filtering
for stochastic constraint programming. In Proceedings of the 14th International
Conference on the Principles and Practice of Constraint Programming, pages 235–
250. Springer Verlag, 2008. Lecture Notes in Computer Science No. 5202.

20. S. A. Tarim. Dynamic Lotsizing Models for Stochastic Demand in Single and
Multi-Echelon Inventory Systems. PhD thesis, Lancaster University, 1996.

21. S. A. Tarim, B. Hnich, R. Rossi, and S. Prestwich. Cost-based filtering techniques
for stochastic inventory control under service level constraints. Constraints, 2008
(forthcoming).

22. R. Williams, C. P. Gomes, and B. Selman. Backdoors to typical case complexity. In
Georg Gottlob and Toby Walsh, editors, IJCAI-03, Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, Acapulco, Mexico, August
9-15, 2003, pages 1173–1178. Morgan Kaufmann, 2003.


