6 research outputs found

    Resilient Critical Infrastructure Management using Service Oriented Architecture

    No full text
    Abstract—The SERSCIS project aims to support the use of interconnected systems of services in Critical Infrastructure (CI) applications. The problem of system interconnectedness is aptly demonstrated by ‘Airport Collaborative Decision Making’ (ACDM). Failure or underperformance of any of the interlinked ICT systems may compromise the ability of airports to plan their use of resources to sustain high levels of air traffic, or to provide accurate aircraft movement forecasts to the wider European air traffic management systems. The proposed solution is to introduce further SERSCIS ICT components to manage dependability and interdependency. These use semantic models of the critical infrastructure, including its ICT services, to identify faults and potential risks and to increase human awareness of them. Semantics allows information and services to be described in such a way that makes them understandable to computers. Thus when a failure (or a threat of failure) is detected, SERSCIS components can take action to manage the consequences, including changing the interdependency relationships between services. In some cases, the components will be able to take action autonomously — e.g. to manage ‘local’ issues such as the allocation of CPU time to maintain service performance, or the selection of services where there are redundant sources available. In other cases the components will alert human operators so they can take action instead. The goal of this paper is to describe a Service Oriented Architecture (SOA) that can be used to address the management of ICT components and interdependencies in critical infrastructure systems. Index Terms—resilience; QoS; SOA; critical infrastructure, SLA

    Grid computing in small and medium-sized enterprises: An exploratory study of corporate attitudes towards economic and security-related issues

    Get PDF
    As Grid computing commenced in the scientific sector, it slowly enters the commercial environment. Although it proposes interesting features for horizontal integration of hardware and resource sharing, businesses slowly implement Intragrids in their companies. Open Grid markets are yet not deployed. --Grid Computing

    A framework for SLA-centric service-based Utility Computing

    Get PDF
    Nicht angegebenService oriented Utility Computing paves the way towards realization of service markets, which promise metered services through negotiable Service Level Agreements (SLA). A market does not necessarily imply a simple buyer-seller relationship, rather it is the culmination point of a complex chain of stake-holders with a hierarchical integration of value along each link in the chain. In service value chains, services corresponding to different partners are aggregated in a producer-consumer manner resulting in hierarchical structures of added value. SLAs are contracts between service providers and service consumers, which ensure the expected Quality of Service (QoS) to different stakeholders at various levels in this hierarchy. \emph{This thesis addresses the challenge of realizing SLA-centric infrastructure to enable service markets for Utility Computing.} Service Level Agreements play a pivotal role throughout the life cycle of service aggregation. The activities of service selection and service negotiation followed by the hierarchical aggregation and validation of services in service value chain, require SLA as an enabling technology. \emph{This research aims at a SLA-centric framework where the requirement-driven selection of services, flexible SLA negotiation, hierarchical SLA aggregation and validation, and related issues such as privacy, trust and security have been formalized and the prototypes of the service selection model and the validation model have been implemented. } The formal model for User-driven service selection utilizes Branch and Bound and Heuristic algorithms for its implementation. The formal model is then extended for SLA negotiation of configurable services of varying granularity in order to tweak the interests of the service consumers and service providers. %and then formalizing the requirements of an enabling infrastructure for aggregation and validation of SLAs existing at multiple levels and spanning % along the corresponding service value chains. The possibility of service aggregation opens new business opportunities in the evolving landscape of IT-based Service Economy. A SLA as a unit of business relationships helps establish innovative topologies for business networks. One example is the composition of computational services to construct services of bigger granularity thus giving room to business models based on service aggregation, Composite Service Provision and Reselling. This research introduces and formalizes the notions of SLA Choreography and hierarchical SLA aggregation in connection with the underlying service choreography to realize SLA-centric service value chains and business networks. The SLA Choreography and aggregation poses new challenges regarding its description, management, maintenance, validation, trust, privacy and security. The aggregation and validation models for SLA Choreography introduce concepts such as: SLA Views to protect the privacy of stakeholders; a hybrid trust model to foster business among unknown partners; and a PKI security mechanism coupled with rule based validation system to enable distributed queries across heterogeneous boundaries. A distributed rule based hierarchical SLA validation system is designed to demonstrate the practical significance of these notions

    Strategies for the Service Market Place

    No full text
    We describe a number of strategies for a future service oriented market place. We describe the SLA’s role within the service framework, and how it enables customers to make value judgements regarding the quality of a service. We also discuss the complexity of too much choice from both the customer and provider points of view, and advocate a “discrete offer” approach. We discuss the “cost of negotiation” and argue that it must be carefully balanced with the cost, value and risk of the offering being negotiated for. We add to the negotiation analysis with presentation and discussion of some results showing a simulated Grid market place and show that it is possible for service providers to deny themselves work through attempting to offer a high quality guaranteed service
    corecore