11 research outputs found

    Strategies for prediction under imperfect monitoring

    Full text link
    We propose simple randomized strategies for sequential prediction under imperfect monitoring, that is, when the forecaster does not have access to the past outcomes but rather to a feedback signal. The proposed strategies are consistent in the sense that they achieve, asymptotically, the best possible average reward. It was Rustichini (1999) who first proved the existence of such consistent predictors. The forecasters presented here offer the first constructive proof of consistency. Moreover, the proposed algorithms are computationally efficient. We also establish upper bounds for the rates of convergence. In the case of deterministic feedback, these rates are optimal up to logarithmic terms.Comment: Journal version of a COLT conference pape

    No Internal Regret via Neighborhood Watch

    Get PDF
    We present an algorithm which attains O(\sqrt{T}) internal (and thus external) regret for finite games with partial monitoring under the local observability condition. Recently, this condition has been shown by (Bartok, Pal, and Szepesvari, 2011) to imply the O(\sqrt{T}) rate for partial monitoring games against an i.i.d. opponent, and the authors conjectured that the same holds for non-stochastic adversaries. Our result is in the affirmative, and it completes the characterization of possible rates for finite partial-monitoring games, an open question stated by (Cesa-Bianchi, Lugosi, and Stoltz, 2006). Our regret guarantees also hold for the more general model of partial monitoring with random signals

    Calibration and Internal no-Regret with Partial Monitoring

    Full text link
    Calibrated strategies can be obtained by performing strategies that have no internal regret in some auxiliary game. Such strategies can be constructed explicitly with the use of Blackwell's approachability theorem, in an other auxiliary game. We establish the converse: a strategy that approaches a convex BB-set can be derived from the construction of a calibrated strategy. We develop these tools in the framework of a game with partial monitoring, where players do not observe the actions of their opponents but receive random signals, to define a notion of internal regret and construct strategies that have no such regret

    Robust approachability and regret minimization in games with partial monitoring

    Get PDF
    Approachability has become a standard tool in analyzing earning algorithms in the adversarial online learning setup. We develop a variant of approachability for games where there is ambiguity in the obtained reward that belongs to a set, rather than being a single vector. Using this variant we tackle the problem of approachability in games with partial monitoring and develop simple and efficient algorithms (i.e., with constant per-step complexity) for this setup. We finally consider external regret and internal regret in repeated games with partial monitoring and derive regret-minimizing strategies based on approachability theory

    Robust approachability and regret minimization in games with partial monitoring

    Get PDF
    Approachability has become a standard tool in analyzing earning algorithms in the adversarial online learning setup. We develop a variant of approachability for games where there is ambiguity in the obtained reward that belongs to a set, rather than being a single vector. Using this variant we tackle the problem of approachability in games with partial monitoring and develop simple and efficient algorithms (i.e., with constant per-step complexity) for this setup. We finally consider external regret and internal regret in repeated games with partial monitoring and derive regret-minimizing strategies based on approachability theory
    corecore