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Cesa-Bianchi, Lugosi, and Stoltz (2006). Our regret guarantees also hold for the more general model of partial
monitoring with random signals.
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Dean P. Foster Alexander Rakhlin
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Abstract

We present an algorithm which attains
O(
p

T ) internal (and thus external) regret for
finite games with partial monitoring under
the local observability condition. Recently,
this condition has been shown by Bartók,
Pál, and Szepesvári [4] to imply the O(

p
T )

rate for partial monitoring games against an
i.i.d. opponent, and the authors conjectured
that the same holds for non-stochastic adver-
saries. Our result is in the a�rmative, and
it completes the characterization of possible
rates for finite partial-monitoring games, an
open question stated by Cesa-Bianchi, Lu-
gosi, and Stoltz [6]. Our regret guarantees
also hold for the more general model of par-
tial monitoring with random signals.

1 Introduction

Imagine playing a repeated T -round zero-sum game
while receiving only some partial information about
the moves of the opponent. More precisely, the game
under consideration is defined by the pair (L, H),
where L 2 RN⇥M is the loss matrix, and H 2 ⌃N⇥M is
a signal matrix defined over some alphabet ⌃. Both of
these are known to the players. At time t 2 {1, . . . , T}
the row player (or, learner) chooses it 2 {1, . . . , N}
and the column player (or, opponent) chooses jt 2
{1, . . . , M}. The learner then observes the value Hit,jt

,
the (it, jt) element of H. Neither the move of the op-
ponent nor the incurred loss Lit,jt is observed by the
row player. The column player, on the other hand,
is aware of all the past moves of the learner. In this
paper, we are concerned with rates for external and in-
ternal regret achievable in this scenario by the learner.

Appearing in Proceedings of the 15th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume XX of JMLR:
W&CP XX. Copyright 2012 by the authors.

The setting described above captures many problems
of interest. For instance, if within each row of H the
entries are distinct, the row player e↵ectively learns
the move jt of the opponent. If, on the other hand,
L = H, the loss is reported to the player, yet there
might be ambiguity about the actual move of the col-
umn player. The latter setting corresponds to the so-
called multiarmed bandit feedback. Other interesting
scenarios include the apple tasting problem, the dy-
namic pricing problem, the label e�cient prediction
problem. We refer to [6] for the definitions and discus-
sions.

The question of characterizing the rates of regret
growth in terms of the matrices L and H has been
raised by Cesa-Bianchi, Lugosi, and Stoltz [6]. Under
a linear dependence between the matrices L and H,
the authors proved O(T 2/3) rates for external regret,
yet noted that there exist games with the ⇥(

p
T ) be-

havior (e.g. the multiarmed bandit games). Similar
distinction in available rates also appears to hold for
internal regret: an O(T 2/3) upper bound was shown
in [6], while the rate of O(

p
T ) is achievable for bandit

feedback by the result of Blum and Mansour [5].

Recently, Bartók, Pál, and Szepesvári in [3, 4] made
key insights into the problem of partial monitoring.
In particular, [4] characterized the rates for exter-
nal regret against an i.i.d. (stochastic) opponent.
The authors showed that rates can only be one of
⇥(1),⇥(

p
T ),⇥(T 2/3) and ⇥(T ), and that a so-called

local observability condition plays a key role in deter-
mining this growth behavior. In the non-stochastic
(adversarial) case, however, no general characteriza-
tion is available to date, with the notable exception of
games with two adversarial actions [3]. As suggested
by [4], to provide a complete characterization for exter-
nal regret against non-stochastic opponents, it would
be enough to show an upper bound of O(

p
T ) under

the local observability condition. The characterization
would follow because [4] proves a ⌦(T 2/3) lower bound
when local observability does not hold (yet the game
is not hopeless with ⌦(T ) regret) and the upper bound
of O(T 2/3) is achieved by the algorithm of Piccolboni
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and Schindelhauer [10] through the analysis of [6].

This paper presents an algorithm, Neighborhood
Watch, with an upper bound of O(

p
T ) for both in-

ternal and external regret against a non-stochastic op-
ponent under the local observability condition. To-
gether with the results mentioned above, this com-
pletes the characterization of possible rates for both
internal and external regret. It is remarkable that
the condition of local observability that characterizes
games against a stochastic environment also charac-
terizes games against non-stochastic opponents.

We now summarize our approach. First, we define a
notion of local internal regret which postulates that
the player does not benefit by switching any of its ac-
tions to a neighboring action. The neighbor relation is
defined by the neighborhood graph of best responses
to mixed strategies of the opponent. Second, we show
that small local internal regret implies small (global)
internal regret. We then present an algorithm which
randomly chooses a neighborhood and then chooses an
action in the neighborhood. A key property satisfied
by the two-level procedure is a certain flow condition.
Under this condition, external regret of sub-algorithms
on local neighborhoods can be turned into a statement
about local internal regret (and, hence, global inter-
nal regret). External regret of the sub-algorithms, in
turn, can be upper bounded because local observabil-
ity condition allows us to estimate relative losses of
neighboring actions.

2 Notation and definitions

We follow the notation of [4]. Let `i denote the ith row
of L. Without loss of generality, assume that each row
of H contains unique sets of symbols. Let �1, . . . , �si

be the list of symbols in the ith row of H. The sig-
nal matrix Si 2 {0, 1}si⇥M is defined by Si(k, j) =
I {Hi,j = �k} where I {} is the indicator function. For
a pair i, k of actions define S(i,k) 2 {0, 1}(si+sk)⇥M

by stacking Si on top of Sk. Note that, upon playing
action i, the signal Hi,j arising from the unobserved
action j is equivalent to the feedback Siej .

Let C = {C1, . . . , CN} be a partition of the simplex
�M according to the best response (action) of the
player to the mixed strategy of the adversary:

Ci = {q 2 �M : i is best response for q}.

Without loss of generality, we assume that no action
is completely dominated by others; that is, each Ci is
non-empty. Further, for simplicity we assume that C
is indeed a partition and there are no degeneracies (we
can modify the argument by defining neighborhood ac-
tion sets as in [4]). Neighboring actions are naturally

defined as those that share a boundary in the parti-
tion. Let G be the graph obtained by connecting the
neighboring cells of the partition C. The vertex set of G
is precisely the set {1, . . . , N} of player’s actions. For
each action i, let the set of its neighbors Ni be called
the neighbor set. By convention, any vertex is its own
neighbor: i 2 Ni. We will often use the terms action
and vertex interchangeably, thanks to the one-to-one
correspondence.

Definition 2.1 (Bartók, Pál, Szepesvári [4]). The
game is called locally observable if `i � `j 2 Im ST

(i,j)

for all neighboring actions i, j.

Under the local observability condition, for each pair of
local actions i, j there exists a vector v(i,j) such that
`j � `i = ST

(i,j)v(i,j). Since L and H are known, we
can compute vectors v(i,j) and use them to construct
unbiased estimates of true loss di↵erences.

Notation Let [N ] denote the set {1, . . . , N}. For a
subset S ⇢ [N ] we use 1S 2 {0, 1}N to denote the
vector with ones on the coordinates in S and zeros
outside. A vector a 2 RN indexed by j is sometimes
denoted by [aj ]j2[N ]. The scalar product between two
vectors a and b will be variously written as aTb or a · b.
Standard basis vectors are denoted by {ei}.

3 Internal Regret in the
Neighborhood

Let � be any mapping {1, . . . , N} 7! {1, . . . , N} (called
departure function [6]), and let it and jt denote the
moves at time t of the player and the opponent, respec-
tively. At the end of the game, regret with respect to
� is calculated as the di↵erence of the incurred cumu-
lative cost and the cost that would have been incurred
had we played action �(it) instead of it, for all t. Let
� be a set of departure functions. �-regret is defined
as

1

T

TX

t=1

c(it, jt)� inf
�2�

1

T

TX

t=1

c(�(it), jt),

and the cost function considered in this paper is sim-
ply c(i, j) = eT

iLej . If � = {�k : k 2 [N ]} consists of
constant mappings �k(i) = k, the regret is called ex-
ternal. For (global) internal regret, the set � consists
of all departure functions �i!j such that �i!j(i) = j
and �i!j(h) = h for h 6= i.

Definition 3.1. A departure function �i!j is called
a local departure function if j is a neighbor of i in the
neighborhood graph G. Regret defined with respect to
the set of all local departure functions is called local
internal regret.

Under the local observability condition, we can esti-
mate the di↵erences in performance between the action
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and its neighbors in a way similar to non-stochastic
multiarmed bandit methods. We can, therefore, en-
sure that any time we chose an action, its loss was not
much more than that of any of its neighbors. That
is, local observability condition leads to an algorithm
with no external regret and, under the flow condition
detailed later, no local internal regret. A key observa-
tion is that no local internal regret implies no global
internal regret. Intuitively, this stems from the fact
that the second-best-response action must be a neigh-
bor of the best-response action. Hence, ensuring small
internal regret against the neighbors is enough to guar-
antee small internal regret.

fi1

fi2

fi3

q p

a
b

r

Figure 1: Illustration of the argument in Lemma 3.1:
A second-best action must either be a neighbor, or it
must be dominated everywhere by other actions.

Lemma 3.1. Local internal regret is equal to internal
regret up to a constant factor.

Proof. It is enough to show that, for any distribution
q 2 �M , any best response i1 and any second-best
response i2 are neighbors in the graph G. By the way
of contradiction, we assume that actions i1 and i2 are
not neighbors (that is, Ci1 and Ci2 do not share a face).
We will then arrive at the conclusion that i2 must be
dominated by other actions, which is a contradiction
because of our assumption that no action is completely
dominated (that is minorized) by others.

Let g(s) = mini2[N ] e
T
iLs be the minimum loss against

the mixed strategy s. Since g is a minimum of N
linear functions {fk(s) , (eT

kL) · s}N
k=1, it is concave

and piece-wise linear. The linear parts of g correspond
to the elements of the partition C. By our assumption,
fi1(q) < fi2(q) and there is no hyperplane fi3 achieving
at q a value in the interval (fi1(q), fi2(q)). Let

S = {(s, t) : t = fi1(s) = fi2(s) for some s 2 �M},

the intersection of two hyperplanes over the simplex.
Note that projection of S onto the simplex would
be precisely the boundary separating Ci1 and Ci2 if
these were the only two actions. This set cannot be

Algorithm 1 Neighborhood Watch Algorithm

1: For all i = {1, . . . , N}, initialize algorithm Ai with
q1
i = x1

i = 1Ni
/|Ni|

2: for t=1,. . . , T do
3: Let Qt = [qt

1, . . . , q
t
N ], where qt

i is given by Ai

4: Find pt satisfying pt = Qtpt

5: Draw kt from pt

6: Play It drawn from qt
kt

and obtain signal SIt
ejt

7: Run local algorithm Akt
with the received signal

8: For any i 6= kt, qt+1
i  qt

i

9: end for

empty, for otherwise action i2 is dominated by i1.
Now, pick any p 2 �M such that fi1(p) = fi2(p),
and let a = (p, fi1(p)). We will now work with the
one-dimensional problem along the line in the simplex
defined by (q, p). The fact that i1 and i2 are not neigh-
bors along the direction (q, p) means that there is an-
other action i3 such that fi3(p) < fi1(p) = fi2(p).
Since fi3(q) � fi2(q) > fi1(q), there must be a point
b = (r, fi3(r)) = (r, fi2(r)) of intersection of fi3 and
fi2 for some r 2 [q, p]. It is easy to see that i2 is com-
pletely minorized along the direction (q, p): on one side
of r it is dominated by i1, while on the other — by i3.

The argument above works for any direction from q
towards the boundary between Ci1 and Ci2 if i1 and i2
were the only actions. Hence, i2 is globally dominated
by other actions, a contradiction.

4 Method and Analysis

The method is a two-level procedure motivated by Fos-
ter and Vohra [7] and Blum and Mansour [5]. The in-
tuition stems from the following observation. Suppose
for each vertex i we have a distribution qi 2 �N sup-
ported on the neighbor set Ni. Let p 2 �N be defined
by p = Qp where Q is the matrix [q1, . . . , qN ]. Then
there are two equivalent ways of sampling an action
from p. First way is to directly sample the vertex ac-
cording to p. Second is to sample a vertex i according
to p and then choose a vertex j within the neighbor
set Ni according to qi. Because of the stationarity
(or flow) condition p = Qp, the two ways are equiv-
alent. This idea of finding a fixed point is implicit in
[7], and Blum and Mansour [5] show how stationarity
can be used to convert external regret guarantees into
an internal regret statement. We show here that, in
fact, this conversion can be done “locally” and only
with “comparison” information between neighboring
actions.

Our procedure is as follows. We run N di↵erent al-
gorithms A1, . . . , AN , each corresponding to a vertex
and its neighbor set. Within this neighbor set we ob-
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ij

G

Figure 2: To each vertex i in the graph G we asso-
ciate an algorithm Ai. The algorithm plays an action
from the distribution qt

i over its neighborhood set Ni

and receives partial information about relative loss be-
tween the node i and its neighbor. The other piece of
the partial information comes from the times when a
neighboring algorithm Aj is run and the action i is
picked.

tain small regret because we can construct estimates of
loss di↵erences among the actions, thanks to the local
observability condition. Each algorithm Ai produces a
distribution qt

i 2 �N at round t, reflecting the relative
performance of the vertex i and its neighbors. Since
Ai is only concerned with its local neighborhood, we
require that qt

i has support on Ni and is zero every-
where else. The meta algorithm Neighborhood Watch
combines the distributions Qt = [qt

1, . . . , q
t
N ] and com-

putes pt as a fixed point

pt = Qtpt . (1)

How do we choose our actions? At each round, we
draw kt ⇠ pt and then It ⇠ qt

kt
according to our two-

level scheme. The action It is the action we play in the
partial monitoring game against the adversary. Let the
action played by the adversary at time t be denoted
by jt. Then the feedback we obtain is SIt

ejt
. This

information is passed to Akt
which updates the distri-

butions qt
kt

. The algorithmic details can be found in
Section 4.2, where we construct estimates of loss dif-
ferences and prove unbiasedness. In Section 4.3, we
analyze regret of our method and prove Theorem 4.1.
First, however, let us state the main results.

4.1 Main Result

The main result of the paper is the following internal
regret guarantee.

Theorem 4.1. Under the local observability condi-
tion, the local internal regret of Algorithm 1 is bounded
as

sup
�

E

(
TX

t=1

(eIt � e�(It))
TLejt

)
 4Nv̄

p
6(log N)T

where v̄ = max(i,j) kv(i,j)k1 and supremum is taken
over all local departure functions.

Algorithm 2 Local Algorithm Ai

1: If t = 1, initialize s = 1
2: For r 2 {⌧i(s�1)+1, . . . , ⌧i(s)} (i.e. for all r since

the last time Ai was run) construct

br
(i,j) = vT

i,j


I {Ir = i} Si

I {kr = i} I {Ir = j} Sj/qr
i (j)

�
ejr

for all j 2 Ni

3: Define for all j 2 Ni,

hs
(i,j) =

⌧i(s)X

r=⌧i(s�1)+1

br
(i,j)

and let

f̃s
i =

h
hs

(i,j) · I {j 2 Ni}
i

j2[N ]

4: Pass the cost f̃s
i to a full-information online con-

vex optimization algorithm over the simplex (e.g.
Exponential Weights Algorithm) and receive the
next distribution xs+1 supported on Ni

5: Define

qt+1
i  (1� �)xs+1 + (�/|Ni|)1Ni

6: Increase the count s s + 1

The next Corollary is immediate given Lemma 3.1:

Corollary 4.1. Internal regret of Algorithm 1 is also
bounded at the same rate as in Theorem 4.1.

We remark that high probability bounds can also be
obtained in a rather straightforward manner, using,
for instance, the approach of [1]. Another extension,
the case of random signals, is discussed in Section 5.

4.2 Estimating loss di↵erences

The random variable kt drawn from pt at time t de-
termines which algorithm is active on the given round.
Let

⌧i(s) = min{t : s =

tX

r=1

I {kt = i}}

denote the (random) time when the algorithm Ai is
invoked for the s-th time. By convention, ⌧i(0) = 0.
Further, define

⇡i(t) = min{t0 � t : kt0 = i}

to denote the next time the algorithm is run on or after
time t. When invoked for the s-th time, the algorithm
Ai constructs estimates

br
(i,j) , vT

i,j


I {Ir = i} Si

I {kr = i} I {Ir = j} Sj/qr
i (j)

�
ejr
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8r 2 {⌧i(s � 1) + 1, . . . , ⌧i(s)}, 8j 2 Ni, for all the
rounds after it has been run the last time, until (and
including) the current time r = ⌧i(s). We can assume
bt
(i,j) = 0 for any j /2 Ni. The estimates bt

(i,j) can
be constructed by the algorithm because SIr

ejr
is pre-

cisely the feedback given to the algorithm.

Let Ft be the �-algebra generated by the random vari-
ables {k1, I1, . . . , kt, It}. For any t, the (conditional)
expectation,

E
h
bt
(i,j)|Ft�1

i
=

NX

k=1

pt
kqt

k(i) · vT

i,j


Si

0

�
ejt

+ pt
iq

t
i(j) · vT

i,j


0

Sj/qt
i(j))

�
ejt

= pt
iv

T

i,jS(i,j)ejt

= pt
i(`j � `i)

Tejt

= pt
i(ej � ei)

TLejt
(2)

where in the second equality we used the fact thatPN
k=1 pt

kqt
k(i) = pt

i by stationarity (1). Thus each al-
gorithm Ai, on average, has access to unbiased esti-
mates of the loss di↵erences within its neighborhood
set.

Recall that algorithm Ai is only aware of its neighbor-
hood, and therefore we peg coordinates of qt

i to zero
outside of Ni. However, for convenience, our notation
below still employs full N -dimensional vectors, and we
keep in mind that only coordinates indexed by Ni are
considered and modified by Ai.

When invoked for the s-th time (that is, t = ⌧i(s)), Ai

constructs linear functions (cost estimates) f̃s
i 2 RN

defined by

f̃s
i =

h
hs

(i,j) · I {j 2 Ni}
i

j2[N ]
,

where

hs
(i,j) =

⌧i(s)X

r=⌧i(s�1)+1

br
(i,j) .

Next lemma shows that f̃s
i · q

⌧(s)
i has the same con-

ditional expectation as the actual loss of the meta al-
gorithm Neighborhood Watch at time t = ⌧i(s). That
is, by bounding expected regret of the black-box algo-
rithm operating on {f̃s

i }, we bound the actual regret
su↵ered by the meta algorithm on the rounds when Ai

was invoked.

Lemma 4.1. Consider algorithm Ai. It holds that

E
n

(q
⌧i(s+1)
i � eu)TLej⌧i(s+1)

��� F⌧i(s)

o

= E
n

f̃s+1
i · (q

⌧i(s+1)
i � eu)

��� F⌧i(s)

o

for any u 2 Ni.

The proof is is deferred to the appendix.

4.3 Regret Analysis

For each algorithm Ai, the estimates f̃s
i are passed

to a full-information black box algorithm which works
only on the coordinates Ni. From the point of view
of the full-information black box, the game has length
Ti = max{s : ⌧i(s)  T}, the (random) number of
times action i has been played within T rounds.

We proceed similarly to [1]: we use a full-information
online convex optimization procedure with an entropy
regularizer (also known as the Exponential Weights
Algorithm) which receives the vector f̃s

i and returns
the next mixed strategy xs+1 2 �N (in fact, e↵ectively
in �|Ni|). We then define

qt+1
i = (1� �)xs+1 + (�/|Ni|)1Ni

where � is to be specified later. Since Ai is run at time
t, we have ⌧i(s) = t by definition. The next time Ai

is active (that is, at time ⌧i(s+1)), the action I⌧i(s+1)

will be played as a random draw from qt+1
i = q

⌧i(s+1)
i ;

that is, the distribution is not modified on the interval
{⌧i(s) + 1, . . . , ⌧i(s + 1)}.

We prove Theorem 4.1 by a series of lemmas. The first
one is a direct consequence of an external regret bound
for a Follow the Regularized Leader (FTRL) algorithm
in terms of local norms [1]. For a strictly convex “reg-
ularizer” F , the local norm k · kx is defined by kzkx =p

zTr2F (x)z and its dual is kzk⇤x =
p

zTr2F (x)�1z.

Lemma 4.2. The full-information algorithm utilized
by Ai has an upper bound

E

(
TiX

s=1

f̃s
i · (q

⌧i(s)
i � e�(i))

)
 ⌘E

(
TiX

s=1

(kf̃s
i k⇤xs)2

)

+ ⌘�1 log N + T� ¯̀

on its external regret, where �(i) 2 Ni is any neighbor
of i, ¯̀= maxi,j Li,j, and ⌘ is a learning rate parameter
to be tuned later.

Proof. Since our decision space is a simplex, it is natu-
ral to use the (negative) entropy regularizer, in which
case FTRL is the same as the Exponential Weights
Algorithm. According to [1, Thm 2.1], for any com-
parator u with zero support outside |Ni|, the following
regret guarantee holds:

TiX

s=1

f̃s
i · (xs � u)  ⌘

TiX

s=1

(kf̃s
i k⇤xs)2 + ⌘�1 log(|Ni|) .

An easy calculation shows that in the
case of entropy regularizer F , the Hes-
sian r2F (x) = diag(x�1

1 , x�1
2 , . . . , x�1

N ) and
r2F (x)�1 = diag(x1, x2, . . . , xN ).
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Let � : {1, . . . , N} 7! {1, . . . , N} be a local departure
function (see Definition 3.1). We can then write a
regret guarantee

TiX

s=1

f̃s
i · (xs � e�(i))  ⌘

TiX

s=1

(kf̃s
i k⇤xs)2 + ⌘�1 log(|Ni|) .

Since, in fact, we play according to a slightly modified

version q
⌧i(s)
i of xs, it holds that

TiX

s=1

f̃s
i · (q

⌧i(s)
i � e�(i))  ⌘

TiX

s=1

(kf̃s
i k⇤xs)2 + ⌘�1 log(|Ni|)

+

TiX

s=1

f̃s
i · (q

⌧i(s)
i � xs) .

Taking expectations of both sides and upper bounding
|Ni| by N ,

E

(
TiX

s=1

f̃s
i · (q

⌧i(s)
i � e�(i))

)

 ⌘E

(
TiX

s=1

(kf̃s
i k⇤xs)2

)
+ ⌘�1 log N

+ E

(
TiX

s=1

f̃s
i · (q

⌧i(s)
i � xs)

)
.

A proof identical to that of Lemma 4.1 gives

E
n

f̃s
i · (q

⌧i(s)
i � xs)

��� F⌧i(s�1)

o

= E
n

(q
⌧i(s)
i � xs)TLej⌧i(s)

|F⌧i(s�1)

o

 E
n
kq⌧i(s)

i � xsk1 · kLej⌧i(s)
k1

��� F⌧i(s�1)

o

 � ¯̀

for the last term, where ¯̀ is the upper bound on the
magnitude of entries of L. Putting everything to-
gether,

E

(
TiX

s=1

f̃s
i · (q

⌧i(s)
i � e�(i))

)

 ⌘E

(
TiX

s=1

(kf̃s
i k⇤xs)2

)
+ ⌘�1 log N + T� ¯̀

where we have upper bounded Ti by T .

As with many bandit-type problems, e↵ort is required
to show that the variance term is controlled. This is
the subject of the next lemma.

Lemma 4.3. The variance term in the bound of
Lemma 4.2 is upper bounded as

NX

i=1

E

(
TiX

s=1

(kf̃s
i k⇤xs)2

)
 24v̄2NT

Proof. First, fix an i 2 [N ] and consider the term

E
nPTi

s=1(kf̃s
i k⇤xs)2

o
. In the proof, we will sometimes

omit i from the notation.

We start by observing that f̃s
i is a sum of ⌧(s)� ⌧(s�

1)� 1 terms of the type vT
i,jSiejr

(that is, of constant
magnitude) and one term of the type vT

i,jSjejr
/qr

i (j).

In controlling kf̃s
i k⇤xs , we therefore have two di�cul-

ties: controlling the number of constant-size terms and
making sure the last term does not explode due to divi-
sion by a small probability qr

i (j). The former is solved
below by a careful argument, while the latter problem
is solved according to usual bandit-style arguments.

More precisely, we can write f̃s
i = g

⌧i(s�1)
⌧i(s)

+ h⌧i(s)

where the vectors g
⌧i(s�1)
⌧i(s)

, h⌧i(s) 2 RN are defined as

g
⌧i(s�1)
⌧i(s)

(j) , g⌧i(s�1)(j) ,
⌧i(s)�1X

r=⌧i(s�1)

I {Ir = i} vT

i,jSiejr

and

h⌧i(s)(j) = I
�
I⌧i(s) = j

 
vT

i,I⌧i(s)
SI⌧i(s)

ej⌧i(s)
/q

⌧i(s)
i (I⌧i(s)),

for j 2 Ni and zero otherwise. Then

(kf̃s
i k⇤xs)2 = (kg⌧i(s�1) + h⌧i(s)k⇤xs)2

 2(kg⌧i(s�1)k⇤xs)2 + 2(kh⌧i(s)k⇤xs)2

We will bound each of the two terms separately, in
expectation. For the second term,

(kh⌧i(s)k⇤xs)2 = xs(I⌧ )(v
T

i,I⌧ SI⌧ ej⌧ /q⌧i (I⌧ ))
2

 xs(I⌧ )(v̄/q⌧i (I⌧ ))
2

where ⌧ = ⌧i(s). Since q
⌧i(s)
i = (1��)xs+(�/|Ni|)1Ni ,

it is easy to verify that xs(I⌧ )/q⌧i (I⌧ )  2 (whenever
� < 1/2) and thus

(kh⌧i(s)k⇤xs)2  2v̄2/q⌧i (I⌧ ) .

The remaining division by the probability disappears
under the expectation:

E
n

(kh⌧i(s)k⇤xs)2
��� �(k1, I1, . . . , k⌧i(s))

o

 2v̄2
NX

j=1

q
⌧i(s)
i (j)/q

⌧i(s)
i (j) = 2Nv̄2 . (3)

Consider now the first term. As discussed in the proof
of Lemma 4.2, the inverse Hessian of the entropy func-
tion shrinks each coordinate i precisely by xs(i)  1,
implying that the local norm is dominated by the Eu-
clidean norm :

kg⌧i(s�1)k⇤xs  kg⌧i(s�1)k2.
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It is therefore enough to upper bound

E
nPTi

s=1 kg⌧i(s)k22
o

. The idea of the proof is the fol-

lowing. Observe that P(kt = i|Ft�1) = P(It = i|Ft�1).
Conditioned on the event that either kt = i or It = i,
each of the two possibilities has probability 1/2 of
occurring. Note that g⌧i(s�1) inflates every time
kt 6= i, yet It = i occurs. It is then easy to see
that magnitude of g⌧i(s�1) is unlikely to get large
before algorithm Ai is run again. We now make this
intuition precise.

The function gt is presently defined only for those time
steps when t = ⌧i(s) for some s (that is, when the
algorithm Ai is invoked). We extend this definition as
follows. Let the jth coordinate of gt be defined as

gt
⇡(t+1)(j) , gt(j) ,

⇡(t+1)�1X

r=t

I {Ir = i} v(i,j)Siejr

for j 2 Ni and 0 otherwise. The function gt can be
thought of as accumulating partial pieces of informa-
tion on rounds when It = i until kt = i occurs. Let us
now define an analogue of ⌧ and ⇡ for the event that
either It = i or kt = i:

�i(s) = min

(
t : s =

tX

r=1

I {kt = i or It = i}
)

Further, for any t, let

⌫i(t) = min{t0 � t : kt = i or It = i},

the next time occurrence of the event {k⌧ = i or I⌧ =
i} on or after t. Let

I = I {⌫i(t) 6= ⇡i(t)}
be the indicator of the event that the first time after t
that {k⌧ = i or I⌧ = i} occurred it was also the case
that the algorithm was not run (i.e. k⌧ 6= i). Note
that gt(j) can now be written recursively as

gt(j) = I ·
h
v(i,j)Siej⌫(t)

+ g
⌫(t)+1
⇡(⌫(t)+1)(j)

i
.

As argued before, P(I = 1|Ft�1) = 1/2. We will now
show that E {gt(j) | Ft�1}  2v̄ by the following in-
ductive argument, whose base case trivially holds for
t = T :

E
�
gt(j)

�� Ft�1

 

= E
n

E
n

I ·
h
v(i,j)Siej⌫(t)

+ g⌫(t)+1(j)
i ���F⌫(t)

o ���Ft�1

o

= E
n

Iv(i,j)Siej⌫(t)
+ IE

n
g⌫(t)+1(j)

���F⌫(t)

o ���Ft�1

o

 v̄ + E
n

Ig⌫(t)+1(j)
���Ft�1

o

= v̄ + E
n

I E
h
g⌫(t)+1(j)

���F⌫(t)

i

| {z }
 2v̄ by induction

��� Ft�1

o

The last quantity is upper bounded by

v̄ + E {I |Ft�1} 2v̄  v̄ + (1/2)2v̄ = 2v̄ .

The expected value of (gt(j))2 can be controlled in
a similar manner. To ease the notation, let z =
v(i,j)Siej⌫(t)

. Using the upper bound for the condi-

tional expectation of gt(j) calculated above,

E
�
(gt(j))2

�� Ft�1

 

= E
n

I ·
⇣
z2 + (g⌫(t)+1(j))2 + 2zg⌫(t)+1(j)

⌘ ��� Ft�1

o

= E
n

Iz2 + IE
n

(g⌫(t)+1(j))2
��� F⌫(t)

o

+ 2IzE
n

g⌫(t)+1(j)
��� F⌫(t)

o ��� Ft�1

o

 5v̄2 + E
n

IE
n

(g⌫(t)+1(j))2
��� F⌫(t)

o ��� Ft�1

o

The argument now proceeds with backward induction
exactly as above. We conclude that

E
�
(gt(j))2

�� Ft�1

 
 10v̄2

and, hence,

E
n
kg⌧i(s�1)k22

o
 10Nv̄2

Together with (3), we conclude that

E
n

(kf̃s
i k⇤xs)2

o
 2(2Nv̄2 + 10Nv̄2) = 24v̄2N.

Summing over t = 1, . . . , T and observing that only
one algorithm is run at any time t proves the state-
ment.

Proof of Theorem 4.1. The flow condition pt =
Qtpt comes in crucially in several places throughout
the proofs, and the next argument is one of them. Ob-
serve that

E
�
e�(It)

��Ft�1

 
=

NX

k=1

NX

i=1

pt
kqt

k(i)e�(i)

=
NX

i=1

e�(i)

NX

k=1

pt
kqt

k(i) =
NX

i=1

e�(i)p
t
i = E

�
e�(kt)

��Ft�1

 

and thus

E

(
TX

t=1

eT

�(It)
Lejt

)
= E

(
TX

t=1

E
�
e�(It)

��Ft�1

 T
Lejt

)

= E

(
TX

t=1

E
�
e�(kt)

��Ft�1

 T
Lejt

)

= E

(
TX

t=1

eT

�(kt)
Lejt

)
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It is because of this equality that external regret with
respect to the local neighborhood can be turned into
local internal regret. We have that

E

(
TX

t=1

(eIt � e�(It))
TLejt

)
= E

(
TX

t=1

(eIt � e�(kt))
TLejt

)

= E

(
TX

t=1

(qt
kt

� e�(kt))
TLejt

)

=

NX

i=1

E

(
TX

t=1

I {kt = i} (qt
i � e�(i))

TLejt

)

By Lemma 4.1,

E
n

(q
⌧i(s)
i � e�(i))

TLej⌧i(s)
|F⌧i(s�1)

o

= E
n

f̃s
i · (q

⌧i(s)
i � e�(i))

��� F⌧i(s�1)

o

and so by Lemma 4.2

E

(
TX

t=1

(eIt
� e�(It))

TLejt

)

=

NX

i=1

E

(
TiX

s=1

f̃s
i · (q

⌧i(s)
i � e�(i))

)

 ⌘
NX

i=1

E

(
TiX

s=1

(kf̃s
i k⇤xs)2

)
+ N(⌘�1 log N + T� ¯̀)

With the help of Lemma 4.3,

E

(
TX

t=1

(eIt � e�(It))
TLejt

)

 ⌘24v̄2NT + N(⌘�1 log N + T� ¯̀)

= 4Nv̄
p

6(log N)T + TN� ¯̀

for the setting of ⌘ =
q

log N
24v̄2T .

We remark that for the purposes of “in expectation”
bounds, we can simply set � = 0 and still get O(

p
T )

guarantees (see [1]). This point is obscured by the
fact that the original algorithm of Auer et al [2] uses
the same parameter for the learning rate ⌘ and ex-
ploration �. If these are separated, the “in expec-
tation” analysis of [2] can be also done with � = 0.
However, to prove high probability bounds on regret,
a setting of � / T�1/2 is required. Using the tech-
niques in [1], the high-probability extension of results
in this paper is straightforward (tails for the terms
kg⌧i(s�1)k22 in Lemma 4.3 are controlled without much
di�culty).

5 Random Signals

We now briefly consider the setting of partial moni-
toring with random signals, studied by Rustichini [11],

Lugosi, Mannor, and Stoltz [8], and Perchet [9]. With-
out much modification of the above arguments, the
local observability condition yet again yields O(

p
T )

internal regret.

Suppose that instead of receiving deterministic feed-
back Hi,j , the decision maker now receives a ran-
dom signal di,j drawn according to the distribution
Hi,j 2 �(⌃) over the signals. In the problem of deter-
ministic feedback studied in the paper so far, the signal
Hi,j = � was identified with the Dirac distribution ��.

Given the matrix H of distributions on ⌃, we can
construct, for each row i, a matrix ⌅i 2 Rsi⇥M as
⌅i(k, j) , Hi,j(�k) where the set �1, . . . , �si

is the
union of supports of Hi,1, . . . , Hi,M . Columns of ⌅i

are now distributions over signals. Given the actions
It and jt of the player and the opponent, the feed-
back provided to the player can be equivalently written
as St

It
ejt where each column r of the random matrix

St
It
2 Rsi⇥M is a standard unit vector drawn inde-

pendently according to the distribution given by the
column r of ⌅i. Hence, ESt

i = ⌅i.

As before, the matrix ⌅(i,j) is constructed by stacking
⌅i on top of ⌅j . The local observability condition,
adapted to the case of random signals, can now be
stated as: `i�`j 2 Im ⌅T

(i,j) for all neighboring actions
i, j.

Let us specify the few places where the analysis slightly
di↵ers from the arguments of the paper. Since we now
have an extra (independent) source of randomness, we
define Ft to be the �-algebra generated by the ran-
dom variables {k1, I1, S

1 . . . , kt, It, S
t} where St is the

random matrix obtained by stacking all St
i . We now

define the estimates

br
(i,j) , vT

i,j


I {Ir = i} St

i

I {kr = i} I {Ir = j} St
j/qr

i (j)

�
ejr

8r 2 {⌧i(s� 1) + 1, . . . , ⌧i(s)}, 8j 2 Ni, with the only
modification that St

i and St
j are now random variables.

Equation (2) now reads

E
h
bt
(i,j)|Ft�1

i
=

NX

k=1

pt
kqt

k(i) · vT

i,j


⌅i

0

�
ejt

+ pt
iq

t
i(j) · vT

i,j


0

⌅j/qt
i(j))

�
ejt

= pt
iv

T

i,j⌅(i,j)ejt (4)

= pt
i(ej � ei)

TLejt (5)

The rest of the analysis follows as in Section 4.3, with
⌅ in place of S.
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[3] G. Bartók, D. Pál, and C. Szepesvári. Toward
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