6,783 research outputs found

    Applications of Deep Learning Models in Financial Forecasting

    Get PDF
    In financial markets, deep learning techniques sparked a revolution, reshaping conventional approaches and amplifying predictive capabilities. This thesis explored the applications of deep learning models to unravel insights and methodologies aimed at advancing financial forecasting. The crux of the research problem lies in the applications of predictive models within financial domains, characterised by high volatility and uncertainty. This thesis investigated the application of advanced deep-learning methodologies in the context of financial forecasting, addressing the challenges posed by the dynamic nature of financial markets. These challenges were tackled by exploring a range of techniques, including convolutional neural networks (CNNs), long short-term memory networks (LSTMs), autoencoders (AEs), and variational autoencoders (VAEs), along with approaches such as encoding financial time series into images. Through analysis, methodologies such as transfer learning, convolutional neural networks, long short-term memory networks, generative modelling, and image encoding of time series data were examined. These methodologies collectively offered a comprehensive toolkit for extracting meaningful insights from financial data. The present work investigated the practicality of a deep learning CNN-LSTM model within the Directional Change framework to predict significant DC events—a task crucial for timely decisionmaking in financial markets. Furthermore, the potential of autoencoders and variational autoencoders to enhance financial forecasting accuracy and remove noise from financial time series data was explored. Leveraging their capacity within financial time series, these models offered promising avenues for improved data representation and subsequent forecasting. To further contribute to financial prediction capabilities, a deep multi-model was developed that harnessed the power of pre-trained computer vision models. This innovative approach aimed to predict the VVIX, utilising the cross-disciplinary synergy between computer vision and financial forecasting. By integrating knowledge from these domains, novel insights into the prediction of market volatility were provided

    Computational methods for biofabrication in tissue engineering and regenerative medicine - a literature review

    Get PDF
    This literature review rigorously examines the growing scientific interest in computational methods for Tissue Engineering and Regenerative Medicine biofabrication, a leading-edge area in biomedical innovation, emphasizing the need for accurate, multi-stage, and multi-component biofabrication process models. The paper presents a comprehensive bibliometric and contextual analysis, followed by a literature review, to shed light on the vast potential of computational methods in this domain. It reveals that most existing methods focus on single biofabrication process stages and components, and there is a significant gap in approaches that utilize accurate models encompassing both biological and technological aspects. This analysis underscores the indispensable role of these methods in understanding and effectively manipulating complex biological systems and the necessity for developing computational methods that span multiple stages and components. The review concludes that such comprehensive computational methods are essential for developing innovative and efficient Tissue Engineering and Regenerative Medicine biofabrication solutions, driving forward advancements in this dynamic and evolving field

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Forest planning utilizing high spatial resolution data

    Get PDF
    This thesis presents planning approaches adapted for high spatial resolution data from remote sensing and evaluate whether such approaches can enhance the provision of ecosystem services from forests. The presented methods are compared with conventional, stand-level methods. The main focus lies on the planning concept of dynamic treatment units (DTU), where treatments in small units for modelling ecosystem processes and forest management are clustered spatiotemporally to form treatment units realistic in practical forestry. The methodological foundation of the thesis is mainly airborne laser scanning data (raster cells 12.5x12.5 m2), different optimization methods and the forest decision support system Heureka. Paper I demonstrates a mixed-integer programming model for DTU planning, and the results highlight the economic advances of clustering harvests. Paper II and III presents an addition to a DTU heuristic from the literature and further evaluates its performance. Results show that direct modelling of fixed costs for harvest operations can improve plans and that DTU planning enhances the economic outcome of forestry. The higher spatial resolution of data in the DTU approach enables the planning model to assign management with higher precision than if stand-based planning is applied. Paper IV evaluates whether this phenomenon is also valid for ecological values. Here, an approach adapted for cell-level data is compared to a schematic approach, dealing with stand-level data, for the purpose of allocating retention patches. The evaluation of economic and ecological values indicate that high spatial resolution data and an adapted planning approach increased the ecological values, while differences in economy were small. In conclusion, the studies in this thesis demonstrate how forest planning can utilize high spatial resolution data from remote sensing, and the results suggest that there is a potential to increase the overall provision of ecosystem services if such methods are applied

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events

    The Application of Data Analytics Technologies for the Predictive Maintenance of Industrial Facilities in Internet of Things (IoT) Environments

    Get PDF
    In industrial production environments, the maintenance of equipment has a decisive influence on costs and on the plannability of production capacities. In particular, unplanned failures during production times cause high costs, unplanned downtimes and possibly additional collateral damage. Predictive Maintenance starts here and tries to predict a possible failure and its cause so early that its prevention can be prepared and carried out in time. In order to be able to predict malfunctions and failures, the industrial plant with its characteristics, as well as wear and ageing processes, must be modelled. Such modelling can be done by replicating its physical properties. However, this is very complex and requires enormous expert knowledge about the plant and about wear and ageing processes of each individual component. Neural networks and machine learning make it possible to train such models using data and offer an alternative, especially when very complex and non-linear behaviour is evident. In order for models to make predictions, as much data as possible about the condition of a plant and its environment and production planning data is needed. In Industrial Internet of Things (IIoT) environments, the amount of available data is constantly increasing. Intelligent sensors and highly interconnected production facilities produce a steady stream of data. The sheer volume of data, but also the steady stream in which data is transmitted, place high demands on the data processing systems. If a participating system wants to perform live analyses on the incoming data streams, it must be able to process the incoming data at least as fast as the continuous data stream delivers it. If this is not the case, the system falls further and further behind in processing and thus in its analyses. This also applies to Predictive Maintenance systems, especially if they use complex and computationally intensive machine learning models. If sufficiently scalable hardware resources are available, this may not be a problem at first. However, if this is not the case or if the processing takes place on decentralised units with limited hardware resources (e.g. edge devices), the runtime behaviour and resource requirements of the type of neural network used can become an important criterion. This thesis addresses Predictive Maintenance systems in IIoT environments using neural networks and Deep Learning, where the runtime behaviour and the resource requirements are relevant. The question is whether it is possible to achieve better runtimes with similarly result quality using a new type of neural network. The focus is on reducing the complexity of the network and improving its parallelisability. Inspired by projects in which complexity was distributed to less complex neural subnetworks by upstream measures, two hypotheses presented in this thesis emerged: a) the distribution of complexity into simpler subnetworks leads to faster processing overall, despite the overhead this creates, and b) if a neural cell has a deeper internal structure, this leads to a less complex network. Within the framework of a qualitative study, an overall impression of Predictive Maintenance applications in IIoT environments using neural networks was developed. Based on the findings, a novel model layout was developed named Sliced Long Short-Term Memory Neural Network (SlicedLSTM). The SlicedLSTM implements the assumptions made in the aforementioned hypotheses in its inner model architecture. Within the framework of a quantitative study, the runtime behaviour of the SlicedLSTM was compared with that of a reference model in the form of laboratory tests. The study uses synthetically generated data from a NASA project to predict failures of modules of aircraft gas turbines. The dataset contains 1,414 multivariate time series with 104,897 samples of test data and 160,360 samples of training data. As a result, it could be proven for the specific application and the data used that the SlicedLSTM delivers faster processing times with similar result accuracy and thus clearly outperforms the reference model in this respect. The hypotheses about the influence of complexity in the internal structure of the neuronal cells were confirmed by the study carried out in the context of this thesis

    Digital Innovations for a Circular Plastic Economy in Africa

    Get PDF
    Plastic pollution is one of the biggest challenges of the twenty-first century that requires innovative and varied solutions. Focusing on sub-Saharan Africa, this book brings together interdisciplinary, multi-sectoral and multi-stakeholder perspectives exploring challenges and opportunities for utilising digital innovations to manage and accelerate the transition to a circular plastic economy (CPE). This book is organised into three sections bringing together discussion of environmental conditions, operational dimensions and country case studies of digital transformation towards the circular plastic economy. It explores the environment for digitisation in the circular economy, bringing together perspectives from practitioners in academia, innovation, policy, civil society and government agencies. The book also highlights specific country case studies in relation to the development and implementation of different innovative ideas to drive the circular plastic economy across the three sub-Saharan African regions. Finally, the book interrogates the policy dimensions and practitioner perspectives towards a digitally enabled circular plastic economy. Written for a wide range of readers across academia, policy and practice, including researchers, students, small and medium enterprises (SMEs), digital entrepreneurs, non-governmental organisations (NGOs) and multilateral agencies, policymakers and public officials, this book offers unique insights into complex, multilayered issues relating to the production and management of plastic waste and highlights how digital innovations can drive the transition to the circular plastic economy in Africa. The Open Access version of this book, available at https://www.taylorfrancis.com, has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives (CC-BY-NC-ND) 4.0 license

    Optimization for Energy Management in the Community Microgrids

    Full text link
    This thesis focuses on improving the energy management strategies for Community Microgrids (CMGs), which are expected to play a crucial role in the future smart grid. CMGs bring many benefits, including increased use of renewable energy, improved reliability, resiliency, and energy efficiency. An Energy Management System (EMS) is a key tool that helps in monitoring, controlling, and optimizing the operations of the CMG in a cost-effective manner. The EMS can include various functionalities like day-ahead generation scheduling, real-time scheduling, uncertainty management, and demand response programs. Generation scheduling in a microgrid is a challenging optimization problem, especially due to the intermittent nature of renewable energy. The power balance constraint, which is the balance between energy demand and generation, is difficult to satisfy due to prediction errors in energy demand and generation. Real-time scheduling, which is based on a shorter prediction horizon, reduces these errors, but the impact of uncertainties cannot be completely eliminated. In regards to demand response programs, it is challenging to design an effective model that motivates customers to voluntarily participate while benefiting the system operator. Mathematical optimization techniques have been widely used to solve power system problems, but their application is limited by the need for specific mathematical properties. Metaheuristic techniques, particularly Evolutionary Algorithms (EAs), have gained popularity for their ability to solve complex and non-linear problems. However, the traditional form of EAs may require significant computational effort for complex energy management problems in the CMG. This thesis aims to enhance the existing methods of EMS in CMGs. Improved techniques are developed for day-ahead generation scheduling, multi-stage real-time scheduling, and demand response implementation. For generation scheduling, the performance of conventional EAs is improved through an efficient heuristic. A new multi-stage scheduling framework is proposed to minimize the impact of uncertainties in real-time operations. In regards to demand response, a memetic algorithm is proposed to solve an incentive-based scheme from the perspective of an aggregator, and a price-based demand response driven by dynamic price optimization is proposed to enhance the electric vehicle hosting capacity. The proposed methods are validated through extensive numerical experiments and comparison with state-of-the-art approaches. The results confirm the effectiveness of the proposed methods in improving energy management in CMGs

    Opportunities and economic assessment for a third-party delivering electricity, heat and cold to residential buildings

    Get PDF
    In the present context of energy transition towards a carbon neutral society, residential sector plays an important role to combat climate change since it represents about 40% of the global final energy consumption and 30% of direct CO2eq emissions in the European Union. Polygeneration systems, facilitating the integration of renewable energies, are a feasible alternative enabling efficient use of natural resources with low environmental impact. This work analyzes the economic viability, in terms of net present value (NPV), and environmental benefit (CO2eq emissions) of an energy supplier company playing the role of an aggregator for both demand and supply. As an owner of a polygeneration system, optimally designed through a MILP approach, it delivers various energy services (electricity, space heating, domestic hot water and cold) to several customers (50 dwellings). The analysis is performed, considering three different business models, in two different locations, Zaragoza (Spain) and Marseille (France), with different energy demands, energy mixes and energy regulations. The optimal configuration obtained, consisting of cogeneration module, PV, reversible heat pump, boiler and thermal energy storage has shown to be very resilient and cost-effective in the scenarios analyzed. Results indicate that the proposed scheme represents an added value for both the supplier company (aggregator), with a positive, and the final customers (owing savings greater than 30%), with significant reduction of CO2eq emissions
    • …
    corecore