4 research outputs found

    Human-Agent Decision-making: Combining Theory and Practice

    Full text link
    Extensive work has been conducted both in game theory and logic to model strategic interaction. An important question is whether we can use these theories to design agents for interacting with people? On the one hand, they provide a formal design specification for agent strategies. On the other hand, people do not necessarily adhere to playing in accordance with these strategies, and their behavior is affected by a multitude of social and psychological factors. In this paper we will consider the question of whether strategies implied by theories of strategic behavior can be used by automated agents that interact proficiently with people. We will focus on automated agents that we built that need to interact with people in two negotiation settings: bargaining and deliberation. For bargaining we will study game-theory based equilibrium agents and for argumentation we will discuss logic-based argumentation theory. We will also consider security games and persuasion games and will discuss the benefits of using equilibrium based agents.Comment: In Proceedings TARK 2015, arXiv:1606.0729

    A distribute deadlock detection and resolution algorithm using agents

    Get PDF
    Deadlock is an intrinsic bottleneck in Distributed Real-Time Database Systems (DRTDBS). Deadlock detection and resolution algorithms are important because in DRTDBS, deadlocked transactions are prone to missing deadlines. We propose an Agent Deadlock Detection and Resolution algorithm (ADCombine), a novel framework for distributed deadlock handling using stationary agents, to address the high overhead suffered by current agent-based algorithms. We test a combined deadlock detection and resolution algorithm that enables the Multi Agent System to adjust its execution based on the changing system load, and that selects its victim transactions more judiciously. We demonstrate the advantages of ADCombine over existing algorithms that use agents or traditional edge-chasing through simulation experiments that measure overhead and performance under a widely varying of experimental conditions.deadlockdistribute real-time database systemsdrtdbsalgorithmmulti agent syste

    Strategic information disclosure to people with multiple alternatives

    No full text
    This paper studies how automated agents can persuade humans to behave in certain ways. The motivation behind such agent’s behavior resides in the utility function that the agent’s designer wants to maximize and which may be different from the user’s utility function. Specifically, in the strategic settings studied, the agent provides correct yet partial information about a state of the world that is unknown to the user but relevant to his decision. Persuasion games were designed to study interactions between automated players where one player sends state information to the other to persuade it to behave in a certain way. We show that this game theory based model is not sufficient to model human-agent interactions, since people tend to deviate from the rational choice. We use machine learning to model such deviation in people from this game theory based model. The agent generates a probabilistic description of the world state that maximizes its benefit and presents it to the users. The proposed model was evaluated in an extensive empirical study involving road selection tasks that differ in length, costs and congestion. Results showed that people’s behavior indeed deviated significantly from the behavior predicted by the game theory based model. Moreover, the agent developed in our model performed better than an agent that followed the behavior dictated by the game-theoretical models
    corecore