3 research outputs found

    Strain-based optimization of human tissue-engineered small diameter blood vessels

    Get PDF
    Coronary arteries originate from the root of the aorta and supply blood to the heart. These arteries can become stiffer and narrowed due to the buildup of atherosclerotic plaque in the inner vessel layers. As the plaque increases in size, the lumen of the coronary arteries decreases and less blood can flow through them. Eventually, coronary artery disease (CAD) can lead to chest pain or a myocardial infarction. Treatment for this disease includes medicines, minimally invasive interventional procedures such as angioplasty and stent implantation, and coronary artery bypass grafting (CABG). Today most CABG operations are performed using combinations of the autologous left internal mammary artery and the saphenous vein. These grafts, especially the latter, perform suboptimal. In addition, a relative large part of all patients do not have suitable veins or arteries, caused by disease of the replacement vessel itself, usage in previous surgeries, the need for multiple bypasses or a combination of all these factors. Therefore, other types of vascular grafts have been proposed to replace the native substitute. Synthetic grafts, such ePTFE and Dacron, perform well at diameters >6mm, but are not suitable for small-diameter

    Human prenatal progenitors for pediatric cardiovascular tissue engineering

    Get PDF
    Pediatric cardiovascular tissue engineering is a promising strategy to overcome the lack of autologous, growing replacements for the early repair of congenital malformations in order to prevent secondary damage to the immature heart. Therefore, cells should be harvested during pregnancy as soon as the cardiovascular defect is detected enabling the generation of living autologous implants with the potential of growth, remodeling and regeneration ready to use at or shortly after birth. Furthermore, the ideal cell source should be easily accessible and allow cell harvest without substantial risks for both the mother and the child and without sacrifice of intact infantile donor tissue. In this work, human prenatal progenitor cells obtained from different extra-embryonically situated fetal tissues were investigated with regard to the pediatric cardiovascular tissue engineering concept. In individual studies prenatal progenitor cells were isolated from different fetal tissues including umbilical cord blood and cord tissue, chorionic villi and amniotic fluid. Cells were expanded and differentiated into cell types that are required for cardiovascular replacements in order to match the characteristics of their native counterparts: a myofibroblast-fibroblast-like cell type producing extracellular matrix and an endothelial cell type forming an antithromobogenic and blood-compatible surface. Thereby, cell phenotypes were analyzed by flowcytometry and immunohistochemistry and genotypes were determined. For the fabrication of cardiovascular tissues, biodegradable cardiovascular scaffolds (PGA/P4HB) were seeded with fibroblast-myofibroblast-like cells derived from either umbilical cord tissue, chorionic villi or amniotic fluid. Constructs were implanted in an in vitro pulse duplicator and exposed to biochemical and/or mechanical stimulation. After, in vitro maturation time, the surfaces of cardiovascular constructs were endothelialized with differentiated umbilical cord blood-derived endothelial progenitor cells or amniotic fluid-derived endothelial progenitor cells and conditioned for an additional 7d. Analysis of the neo-tissues comprised histology, immunohistochemistry (vimentin, a- SMA, desmin, Ki-67), biochemistry (extracellular matrix (ECM) - analysis, DNA), mechanical testing and scanning electron microscopy (SEM). Neo-endothelia were analysed by immunohistochemistry (CD31, vWF, thrombomodulin, tissue factor, eNOS). After differentiation, cells demonstrated characteristics of fibroblast-myofibroblast-like cells expressing vimentin, desmin and partly a-SMA independent of the cell source. Furthermore, umbilical cord blood-derived endothelial progenitor cells and amniotic fluid-derived cells expressed typical endothelial cell markers such as CD31, vWF, thrombomodulin, tissue factor, and eNOS, respectively. Genotyping confirmed the fetal origin of the cells without contamination with maternal cells. All cardiovascular constructs showed cellular tissue formation with functional endothelia as indicated by the expression of eNOS. Expression of Ki-67 confirmed proliferation of cells in all parts of the neo-tissues. Matrix analysis (collagen and proteoglycans) and DNA content demonstrated constituents typical of native cardiovascular tissues. Mechanical properties revealed native analogous profiles but did not reach native values. SEM showed cell-ingrowth into the polymer and smooth surfaces covered densely with endothelial cells. Prenatal progenitors from different sources were successfully used for the in vitro fabrication and maturation of living autologous cardiovascular constructs. With regard to clinical application the use of amniotic fluid-derived prenatal progenitor cells represents the most attractive approach as it enables the prenatal fabrication of cardiovascular replacements based on a single cell source ready to use at birth

    Functional endothelium on tissue engineered small diameter vascular grafts

    Get PDF
    Er zijn veel mensen die beschadigde of verstopte kransslagaderen of perifere vaten hebben. Bij deze patiënten is het noodzakelijk om de bloeddoorstroming te herstellen. Het uitvoeren van een bypass operatie is de voornaamste behandeling hiervoor. Een andere groep patiënten die ook afhankelijk kunnen zijn van vasculaire grafts zijn patiënten met een nierziekte die afhankelijk zijn van dialyse. Tegenwoordig worden voor bypass operaties vaak patiënt-eigen (slag)aders of synthetische grafts gebruikt. Sommige van deze grafts hebben een beperkte levensduur en functioneren niet optimaal. Wanneer bijvoorbeeld een ader uit het onderbeen wordt gebruikt om een kransslagader te vervangen zit na 10 jaar ongeveer 57% van deze bypasses dicht. Tevens is het zo dat voor vaatvervangingen grafts steeds vaker nodig zijn, aangezien een toenemend aantal patiënten een heroperatie moet ondergaan en geen geschikte vaten meer over heeft. Het kweken van bloedvaten in het laboratorium (tissueengineering) zou een goed alternatief kunnen zijn om de beperkingen van de huidige grafts te verhelpen. Zulke bloedvaten bestaan uit levend patiënt-eigen weefsel en hebben daardoor de eigenschap om zich te herstellen en te remodelleren. Recentelijk zijn er grote vooruitgangen geboekt in de ontwikkeling van sterke humane getissue-engineerde grafts met een kleine diameter. Er is echter minder onderzoek gedaan aan de ontwikkeling van een functionele endotheelcel (EC) laag op die grafts. De EC laag is een zeer actieve cellaag die betrokken is bij weefsel homeostase en de regulering van vaatwandspanning. Verder is deze cellaag ook betrokken bij de regulering van groei van andere celtypen. Daarnaast wordt trombose, wat een belangrijke oorzaak is van het falen van grafts, actief voorkomen door de aanwezigheid van een intacte EC laag. Daarom was het doel van dit proefschrift om een functionele EC laag te creëren op humane getissue-engineerde grafts. Deze grafts zijn gebaseerd op een scaffold van polyglycolic acid met een poly-4-hydroxybutyrate coating, die gezaaid wordt met humane myofibroblasten (MF) afkomstig van de vena saphena. Om een getissue-engineerde graft te endothelialiseren is het noodzakelijk de twee celtypen (ECs en MFs) samen te kweken. Dit is niet triviaal, aangezien de twee celtypen normaal verschillende kweekomstandigheden vereisen. In dit proefschrift is een 3D co-cultuur ontwikkeld, waarin de omstandigheden om de MFs en ECs samen te kweken konden worden geoptimaliseerd. Er is aangetoond dat ECs niet overleven in standaard kweekmedium (DMEM), maar dat deze cellen een speciaal EC medium nodig hebben. Wanneer dit medium gebruikt wordt en de ECs pas na 3 of 4 weken kweken op de vasculaire constructen gezaaid worden, resulteert dit in mooie volle EC laag. Het is bekend dat ECs het fenotype van de cellen in hun omgeving kunnen beïnvloeden wanneer deze cellen samen gekweekt worden. Het is in dit proefschrift aangetoond dat zowel de groei als de expressie van een gladde spiercel marker van MFs beïnvloed wordt door het samen kweken met ECs. Het is ook aangetoond dat een laag ECs de weefselcompositie van de vasculaire constructen beïnvloedt. Een functionele EC laag dient ook niet trombogeen te zijn. Om dit te onderzoeken zijn de vasculaire constructen blootgesteld aan een bloedstroming en hiermee is aangetoond dat ECs inderdaad de trombogeniciteit van de constructen verlaagd. Als laatste is er een bioreactor ontwikkeld om getissue-engineerde bloedvaten met een kleine diameter te kweken en waarmee ook een EC laag aangebracht kan worden. Eén dag na het zaaien van de ECs is de cellaag bijna vol en hebben de cellen een ronde vorm. De gezaaide ECs worden vervolgens geconditioneerd door kweekmedium door de grafts te laten stromen, wat een afschuifspannig op de cellen veroorzaakt. De viscositeit van het kweekmedium is verhoogd tot de waarde van bloed door middel van xanthaan gom. Xanthaan gom is een stabiel verdikkingsmiddel en zorgt al bij lage concentraties voor hoge viscositeiten. Het gebruik van xanthaan gom zorgt ervoor dat, wanneer we een fysiologische stroming aanbrengen in het vat, ook een fysiologische afschuifspanning ontstaat. Het is in dit proefschrift aangetoond dat xantaan gom geen invloed heeft op de groei van ECs, hun oriëntatie in de richting van de vloeistofstroming en hun bloedvatverwijdende eigenschappen. De afschuifspanning op de ECs van de getissue-engineerde vaten zorgt ervoor dat de ECs wel een volle laag vormen. Tevens oriënteren de ECs zich in de richting van de stroming en krijgen ze een langgerekte vorm, in tegenstelling tot de ongeconditioneerde ECs, die geen volle cellaag vormen. Samenvattend kan gesteld worden dat in dit proefschrift verschillende EC functies zijn onderzocht met behulp van verschillende modelsystemen. Er is tevens een bioreactor systeem ontwikkeld waarmee bloedvaten met een kleine diameter gekweekt zijn. Na optimalisatie van de kweekomstandigheden is op deze vaten een functionele EC laag gecreëerd, die fysiologische afschuifspanningen kan weerstaan. Deze functionele EC laag is een belangrijke stap voor de klinische toepasbaarheid van deze vaten
    corecore