33,163 research outputs found
Selective syntheses of leuconolam, leuconoxine, and mersicarpine alkaloids from a common intermediate through regiocontrolled cyclizations by Staudinger reactions
Selective syntheses of leuconolam, leuconoxine, and mersicarpine alkaloids bearing distinctive core structures were achieved through Staudinger reactions using a common intermediate. In the key cyclization step, water functioned like a switch to control which core structure to produce. The chemistry allowed for selective syntheses of the group of alkaloids from a simple intermediate through straightforward chemical operations
Time-Minimal Control of Dissipative Two-level Quantum Systems: the Generic Case
The objective of this article is to complete preliminary results concerning
the time-minimal control of dissipative two-level quantum systems whose
dynamics is governed by Lindblad equations. The extremal system is described by
a 3D-Hamiltonian depending upon three parameters. We combine geometric
techniques with numerical simulations to deduce the optimal solutions.Comment: 24 pages, 16 figures. submitted to IEEE transactions on automatic
contro
Optimal control of the signal to noise ratio per unit time for a spin 1/2 particle
We investigate the maximum signal to noise ratio per unit time that can be
achieved for a spin 1/2 particle subjected to a periodic pulse sequence.
Optimal control techniques are applied to design the control field and the
position of the steady state, leading to the best signal to noise performance.
A complete geometric description of the optimal control problem is given in the
unbounded case. We show the optimality of the well-known Ernst angle solution,
which is widely used in spectroscopic and medical imaging applications, over a
large control space allowing use of shaped pulses.Comment: 12 pages, 4 figure
Synthesis of Meso‐Substituted Subphthalocyanine–Subporphyrin Hybrids: Boron Subtribenzodiazaporphyrins
The first syntheses of hybrid structures that lie between SubPhthalocyanines and SubPorphyrins are reported. The versatile, single-step synthetic protocol uses a preformed aminoisoindolene to provide the bridging methine unit and its substituent, while trialkoxyborates simultaneously act as Lewis acid/template and provider of the apical substituent. Selection of each component therefore allows controlled formation of diverse, differentially functionalised systems. The new hybrids are isolated as robust, pure materials that display intense absorption and emission in the mid-visible region. They are further characterised in solution and solid state by variable temperature NMR spectroscopy and X-ray crystallography respectivel
Novel Fmoc-Polyamino Acids for Solid-Phase Synthesis of Defined Polyamidoamines
A versatile solid-phase approach to sequence-defined polyamidoamines was developed. Four different Fmoc-polyamino acid building blocks were synthesized by selective protection of symmetrical oligoethylenimine precursors followed by introduction of a carboxylic acid handle using cyclic anhydrides and subsequent Fmoc-protection. The novel Fmoc-polyamino acids were used to construct polyamidoamines demonstrating complete compatibility to standard Fmoc reaction conditions. The straightforward synthesis of the building blocks and the high efficiency of the solid-phase coupling reactions allow the versatile synthesis of defined polycations
Two-Dimensional Controlled Syntheses of Polypeptide Molecular Brushes via N-Carboxyanhydride Ring-Opening Polymerization and Ring-Opening Metathesis Polymerization.
Well-defined molecular brushes bearing polypeptides as side chains were prepared by a "grafting through" synthetic strategy with two-dimensional control over the brush molecular architectures. By integrating N-carboxyanhydride ring-opening polymerizations (NCA ROPs) and ring-opening metathesis polymerizations (ROMPs), desirable segment lengths of polypeptide side chains and polynorbornene brush backbones were independently constructed in controlled manners. The N2 flow accelerated NCA ROP was utilized to prepare polypeptide macromonomers with different lengths initiated from a norbornene-based primary amine, and those macromonomers were then polymerized via ROMP. It was found that a mixture of dichloromethane and an ionic liquid were required as the solvent system to allow for construction of molecular brush polymers having densely-grafted peptide chains emanating from a polynorbornene backbone, poly(norbornene-graft-poly(β-benzyl-l-aspartate)) (P(NB-g-PBLA)). Highly efficient postpolymerization modification was achieved by aminolysis of PBLA side chains for facile installment of functional moieties onto the molecular brushes
Mixed-metal MIL-100(Sc,M) (M=Al, Cr, Fe) for Lewis acid catalysis and tandem C−C bond formation and alcohol oxidation
The authors thank Johnson Matthey and the EPSRC for an Industrial CASE award to L.M. We gratefully acknowledge the IAESTE UK for a scholarship to B.E. They also thank the Leverhulme Trust (F/00 268/BJ), EPSRC (EP/J501542/1), and the EaStCHEM Research Computing Facility.The trivalent metal cations Al3+, Cr3+, and Fe3+ were each introduced, together with Sc3+, into MIL-100(Sc,M) solid solutions (M=Al, Cr, Fe) by direct synthesis. The substitution has been confirmed by powder X-ray diffraction (PXRD) and solid-state NMR, UV/Vis, and X-ray absorption (XAS) spectroscopy. Mixed Sc/Fe MIL-100 samples were prepared in which part of the Fe is present as α-Fe2O3 nanoparticles within the mesoporous cages of the MOF, as shown by XAS, TGA, and PXRD. The catalytic activity of the mixed-metal catalysts in Lewis acid catalysed Friedel–Crafts additions increases with the amount of Sc present, with the attenuating effect of the second metal decreasing in the order Al>Fe>Cr. Mixed-metal Sc,Fe materials give acceptable activity: 40 % Fe incorporation only results in a 20 % decrease in activity over the same reaction time and pure product can still be obtained and filtered off after extended reaction times. Supported α-Fe2O3 nanoparticles were also active Lewis acid species, although less active than Sc3+ in trimer sites. The incorporation of Fe3+ into MIL-100(Sc) imparts activity for oxidation catalysis and tandem catalytic processes (Lewis acid+oxidation) that make use of both catalytically active framework Sc3+ and Fe3+. A procedure for using these mixed-metal heterogeneous catalysts has been developed for making ketones from (hetero)aromatics and a hemiacetal.Peer reviewe
Triazolinediones as highly enabling synthetic tools
Triazolinediones (TADs) are unique reagents in organic synthesis that have also found wide applications in different research disciplines, in spite of their somewhat "exotic" reputation. In this review, we offer two case studies that demonstrate the possibilities of these versatile and reliable synthetic tools, namely, in the field of polymer science as well as in more recently emerging applications in the field of click chemistry. As the general use of triazolinediones has always been hampered by the limited commercial and synthetic availability of such reagents, we also offer a review of the available TAD reagents, together with a detailed discussion of their synthesis and reactivity. This review thus aims to serve as a practical guide for researchers that are interested in exploiting and further developing the exceptional click -like reactivity of triazolinediones in various applications
Novel polyoxometalates: Is antimony the new molybdenum?
Polyoxometalates based on Mo, W or V have been known for a long time and present a diverse range of structures, with the [XMo₁₂O₄₀]ⁿ⁻ Keggin ions (X = P, Si ,…) perhaps the best known.¹ They are still subject to intense research with >4000 papers published in the past five years. Following on from our study² of aryl arsonic acids RAsO₃H₂, which are straightforward molecular species based on four-coordinate As(V), we became interested in the corresponding antimony compounds. Although aryl stibonic acids of nominal formula RSbO₃H₂ have been known for over 100 years,³ their composition has remained uncertain, as they form only amorphous solids, have complicated titration behaviour and only limited solubility. The presumption has been that they are polymeric, based on 5- or 6-coordinate Sb with Sb-O-Sb linkages, though direct evidence is sparse.⁴ Recently, it has been shown by Beckman that if very bulky R groups are used, then relatively simple dimers such as (2,6-Mes₂C₆H₃Sb₂O₂(OH)₄(Mes=mesityl) can be isolated, but these represent a special case.
Synthesis of indoles via alkylidenation of acyl hydrazides
Indoles have been synthesised via alkylidenation of acyl phenylhydrazides using phosphoranes and the Petasis reagent, followed by in situ thermal rearrangement of the product enehydrazines. The Petasis reagent provides an essentially neutral equivalent of the [acid-catalysed] Fischer indole synthesis, but with acyl phenylhydrazides as starting substrates. Alkylidene triphenylphosphoranes convert aroyl phenylhydrazides to indoles, but acyl phenylhydrazides derived from aliphatic carboxylic acids undergo a Brunner reaction to form indolin-2-ones
- …
