12 research outputs found

    Explaining Aviation Safety Incidents Using Deep Temporal Multiple Instance Learning

    Full text link
    Although aviation accidents are rare, safety incidents occur more frequently and require a careful analysis to detect and mitigate risks in a timely manner. Analyzing safety incidents using operational data and producing event-based explanations is invaluable to airline companies as well as to governing organizations such as the Federal Aviation Administration (FAA) in the United States. However, this task is challenging because of the complexity involved in mining multi-dimensional heterogeneous time series data, the lack of time-step-wise annotation of events in a flight, and the lack of scalable tools to perform analysis over a large number of events. In this work, we propose a precursor mining algorithm that identifies events in the multidimensional time series that are correlated with the safety incident. Precursors are valuable to systems health and safety monitoring and in explaining and forecasting safety incidents. Current methods suffer from poor scalability to high dimensional time series data and are inefficient in capturing temporal behavior. We propose an approach by combining multiple-instance learning (MIL) and deep recurrent neural networks (DRNN) to take advantage of MIL's ability to learn using weakly supervised data and DRNN's ability to model temporal behavior. We describe the algorithm, the data, the intuition behind taking a MIL approach, and a comparative analysis of the proposed algorithm with baseline models. We also discuss the application to a real-world aviation safety problem using data from a commercial airline company and discuss the model's abilities and shortcomings, with some final remarks about possible deployment directions

    Developing an innovative entity extraction method for unstructured data

    Get PDF
    The main goal of this study is to build high-precision extractors for entities such as Person and Organization as a good initial seed that can be used for training and learning in machine-learning systems, for the same categories, other categories, and across domains, languages, and applications. The improvement of entities extraction precision also increases the relationships extraction precision, which is particularly important in certain domains (such as intelligence systems, social networking, genetic studies, healthcare, etc.). These increases in precision improve the end users’ experience quality in using the extraction system because it lowers the time that users spend for training the system and correcting outputs, focusing more on analyzing the information extracted to make better data-driven decisions

    Beyond the buzzword: big data and national security decision-making

    Get PDF
    This article explores the role big data plays in the national security decision-making process. The global surveillance disclosures initiated by former NSA contractor Edward Snowden have increased public and academic discussions about big data and national security. Yet, efforts to summarize and import insights from the vast and interdisciplinary literature on data analytics have remained rare in the field of security studies. To fill this gap, we explain the core characteristics of big data, provide an overview of the techniques and methods of data analytics, and explore how big data can support the core national security process of intelligence. Big data is not only defined by the volume of data but also by their velocity, variety and issues of veracity. Scientists have developed a number of techniques to extract information from big data and support national security practices. We find that data analytics tools contribute to and influence all the core intelligence functions in the contemporary US national security apparatus. However, these tools cannot replace the central role of humans and their ability to contextualize security threats. The fundamental value of big data lies in humans' ability to understand its power and mitigate its limits

    Linking named entities to Wikipedia

    Get PDF
    Natural language is fraught with problems of ambiguity, including name reference. A name in text can refer to multiple entities just as an entity can be known by different names. This thesis examines how a mention in text can be linked to an external knowledge base (KB), in our case, Wikipedia. The named entity linking (NEL) task requires systems to identify the KB entry, or Wikipedia article, that a mention refers to; or, if the KB does not contain the correct entry, return NIL. Entity linking systems can be complex and we present a framework for analysing their different components, which we use to analyse three seminal systems which are evaluated on a common dataset and we show the importance of precise search for linking. The Text Analysis Conference (TAC) is a major venue for NEL research. We report on our submissions to the entity linking shared task in 2010, 2011 and 2012. The information required to disambiguate entities is often found in the text, close to the mention. We explore apposition, a common way for authors to provide information about entities. We model syntactic and semantic restrictions with a joint model that achieves state-of-the-art apposition extraction performance. We generalise from apposition to examine local descriptions specified close to the mention. We add local description to our state-of-the-art linker by using patterns to extract the descriptions and matching against this restricted context. Not only does this make for a more precise match, we are also able to model failure to match. Local descriptions help disambiguate entities, further improving our state-of-the-art linker. The work in this thesis seeks to link textual entity mentions to knowledge bases. Linking is important for any task where external world knowledge is used and resolving ambiguity is fundamental to advancing research into these problems
    corecore