45,655 research outputs found

    Cyberthreats, Attacks and Intrusion Detection in Supervisory Control and Data Acquisition Networks

    Get PDF
    Supervisory Control and Data Acquisition (SCADA) systems are computer-based process control systems that interconnect and monitor remote physical processes. There have been many real world documented incidents and cyber-attacks affecting SCADA systems, which clearly illustrate critical infrastructure vulnerabilities. These reported incidents demonstrate that cyber-attacks against SCADA systems might produce a variety of financial damage and harmful events to humans and their environment. This dissertation documents four contributions towards increased security for SCADA systems. First, a set of cyber-attacks was developed. Second, each attack was executed against two fully functional SCADA systems in a laboratory environment; a gas pipeline and a water storage tank. Third, signature based intrusion detection system rules were developed and tested which can be used to generate alerts when the aforementioned attacks are executed against a SCADA system. Fourth, a set of features was developed for a decision tree based anomaly based intrusion detection system. The features were tested using the datasets developed for this work. This dissertation documents cyber-attacks on both serial based and Ethernet based SCADA networks. Four categories of attacks against SCADA systems are discussed: reconnaissance, malicious response injection, malicious command injection and denial of service. In order to evaluate performance of data mining and machine learning algorithms for intrusion detection systems in SCADA systems, a network dataset to be used for benchmarking intrusion detection systemswas generated. This network dataset includes different classes of attacks that simulate different attack scenarios on process control systems. This dissertation describes four SCADA network intrusion detection datasets; a full and abbreviated dataset for both the gas pipeline and water storage tank systems. Each feature in the dataset is captured from network flow records. This dataset groups two different categories of features that can be used as input to an intrusion detection system. First, network traffic features describe the communication patterns in a SCADA system. This research developed both signature based IDS and anomaly based IDS for the gas pipeline and water storage tank serial based SCADA systems. The performance of both types of IDS were evaluates by measuring detection rate and the prevalence of false positives

    Backdoor attack detection based on stepping stone detection approach

    Get PDF
    Network intruders usually use a series of hosts (stepping stones) to conceal the tracks of their intrusion in the network. This type of intrusion can be detected through an approach called Stepping Stone Detection (SSD). In the past years, SSD was confined to the detection of only this type of intrusion. In this dissertation, we consider the use of SSD concepts in the field of backdoor attack detection. The application of SSD in this field results in many advantages. First, the use of SSD makes the backdoor attack detection and the scan process time faster. Second, this technique detects all types of backdoor attack, both known and unknown, even if the backdoor attack is encrypted. Third, this technique reduces the large storage resources used by traditional antivirus tools in detecting backdoor attacks. This study contributes to the field by extending the application of SSD-based techniques, which are usually used in SSD-based environments only, into backdoor attack detection environments. Through an experiment, the accuracy of SSD-based backdoor attack detection is shown as very high

    Poster Abstract: Towards Scalable and Trustworthy Decentralized Collaborative Intrusion Detection System for IoT

    Full text link
    An Intrusion Detection System (IDS) aims to alert users of incoming attacks by deploying a detector that monitors network traffic continuously. As an effort to increase detection capabilities, a set of independent IDS detectors typically work collaboratively to build intelligence of holistic network representation, which is referred to as Collaborative Intrusion Detection System (CIDS). However, developing an effective CIDS, particularly for the IoT ecosystem raises several challenges. Recent trends and advances in blockchain technology, which provides assurance in distributed trust and secure immutable storage, may contribute towards the design of effective CIDS. In this poster abstract, we present our ongoing work on a decentralized CIDS for IoT, which is based on blockchain technology. We propose an architecture that provides accountable trust establishment, which promotes incentives and penalties, and scalable intrusion information storage by exchanging bloom filters. We are currently implementing a proof-of-concept of our modular architecture in a local test-bed and evaluate its effectiveness in detecting common attacks in IoT networks and the associated overhead.Comment: Accepted to ACM/IEEE IoTDI 202

    Intrusion Detection in Mobile Phone Systems Using Data Mining Techniques

    Get PDF
    New security threats emerge against mobile devices as the devices\u27 computing power and storage capabilities evolve. Preventive mechanisms like authentication, encryption alone are not sufficient to provide adequate security for a system. There is a definite need for Intrusion detection systems that will improve security and use fewer resources on the mobile phone. In this work we proposed an intrusion detection method that efficiently detects intrusions in mobile phones using Data Mining techniques. We used network based approach that will remove the overhead processing from the mobile phones. A neural network classifier will be built and trained for each user based on his call logs .An application that runs on smart phone of the user collects certain information of the user and sends them over to the remote server. These logs then fed to the already trained classifier which analyzes the logs and sends back the feedback to the smart phones whenever abnormalities are found. Also we compared different neural classifiers to identify the classifier with better performance. Our results showed clearly the effectiveness of our method to detect intrusions and outperformed existing Intrusion detection methods with 95% detection rate

    Cooperative Trust Framework for Cloud Computing Based on Mobile Agents

    Get PDF
    Cloud computing opens doors to the multiple, unlimited venues from elastic computing to on demand provisioning to dynamic storage, reduce the potential costs through optimized and efficient computing. To provide secure and reliable services in cloud computing environment is an important issue. One of the security issues is how to reduce the impact of for any type of intrusion in this environment. To counter these kinds of attacks, a framework of cooperative Hybrid intrusion detection system (Hy-IDS) and Mobile Agents is proposed. This framework allows protection against the intrusion attacks. Our Hybrid IDS is based on two types of IDS, the first for the detection of attacks at the level of virtual machines (VMs), the second for the network attack detection and Mobile Agents. Then, this framework unfolds in three phases: the first, detection intrusion in a virtual environment using mobile agents for collected malicious data. The second, generating new signatures from malicious data, which were collected in the first phase. The third, dynamic deployment of updates between clusters in a cloud computing, using the newest signatures previously created. By this type of close-loop control, the collaborative network security management system can identify and address new distributed attacks more quickly and effectively. In this paper, we develop a collaborative approach based on Hy-IDS and Mobile Agents in Cloud Environment, to define a dynamic context which enables the detection of new attacks, with much detail as possible

    An Artificial Immune System-Inspired Multiobjective Evolutionary Algorithm with Application to the Detection of Distributed Computer Network Intrusions

    Get PDF
    Today\u27s predominantly-employed signature-based intrusion detection systems are reactive in nature and storage-limited. Their operation depends upon catching an instance of an intrusion or virus after a potentially successful attack, performing post-mortem analysis on that instance and encoding it into a signature that is stored in its anomaly database. The time required to perform these tasks provides a window of vulnerability to DoD computer systems. Further, because of the current maximum size of an Internet Protocol-based message, the database would have to be able to maintain 25665535 possible signature combinations. In order to tighten this response cycle within storage constraints, this thesis presents an Artificial Immune System-inspired Multiobjective Evolutionary Algorithm intended to measure the vector of trade-off solutions among detectors with regard to two independent objectives: best classification fitness and optimal hypervolume size. Modeled in the spirit of the human biological immune system and intended to augment DoD network defense systems, our algorithm generates network traffic detectors that are dispersed throughout the network. These detectors promiscuously monitor network traffic for exact and variant abnormal system events, based on only the detector\u27s own data structure and the ID domain truth set, and respond heuristically. The application domain employed for testing was the MIT-DARPA 1999 intrusion detection data set, composed of 7.2 million packets of notional Air Force Base network traffic. Results show our proof-of-concept algorithm correctly classifies at best 86.48% of the normal and 99.9% of the abnormal events, attributed to a detector affinity threshold typically between 39-44%. Further, four of the 16 intrusion sequences were classified with a 0% false positive rate

    Hierarchical Design Based Intrusion Detection System For Wireless Ad hoc Network

    Full text link
    In recent years, wireless ad hoc sensor network becomes popular both in civil and military jobs. However, security is one of the significant challenges for sensor network because of their deployment in open and unprotected environment. As cryptographic mechanism is not enough to protect sensor network from external attacks, intrusion detection system needs to be introduced. Though intrusion prevention mechanism is one of the major and efficient methods against attacks, but there might be some attacks for which prevention method is not known. Besides preventing the system from some known attacks, intrusion detection system gather necessary information related to attack technique and help in the development of intrusion prevention system. In addition to reviewing the present attacks available in wireless sensor network this paper examines the current efforts to intrusion detection system against wireless sensor network. In this paper we propose a hierarchical architectural design based intrusion detection system that fits the current demands and restrictions of wireless ad hoc sensor network. In this proposed intrusion detection system architecture we followed clustering mechanism to build a four level hierarchical network which enhances network scalability to large geographical area and use both anomaly and misuse detection techniques for intrusion detection. We introduce policy based detection mechanism as well as intrusion response together with GSM cell concept for intrusion detection architecture.Comment: 16 pages, International Journal of Network Security & Its Applications (IJNSA), Vol.2, No.3, July 2010. arXiv admin note: text overlap with arXiv:1111.1933 by other author

    A Lightweight Approach for Network Intrusion Detection based on Self-Knowledge Distillation

    Full text link
    Network Intrusion Detection (NID) works as a kernel technology for the security network environment, obtaining extensive research and application. Despite enormous efforts by researchers, NID still faces challenges in deploying on resource-constrained devices. To improve detection accuracy while reducing computational costs and model storage simultaneously, we propose a lightweight intrusion detection approach based on self-knowledge distillation, namely LNet-SKD, which achieves the trade-off between accuracy and efficiency. Specifically, we carefully design the DeepMax block to extract compact representation efficiently and construct the LNet by stacking DeepMax blocks. Furthermore, considering compensating for performance degradation caused by the lightweight network, we adopt batch-wise self-knowledge distillation to provide the regularization of training consistency. Experiments on benchmark datasets demonstrate the effectiveness of our proposed LNet-SKD, which outperforms existing state-of-the-art techniques with fewer parameters and lower computation loads.Comment: Accepted to IEEE ICC 202
    • …
    corecore