33 research outputs found

    Learning-based attacks in cyber-physical systems

    Get PDF
    We introduce the problem of learning-based attacks in a simple abstraction of cyber-physical systems---the case of a discrete-time, linear, time-invariant plant that may be subject to an attack that overrides the sensor readings and the controller actions. The attacker attempts to learn the dynamics of the plant and subsequently override the controller's actuation signal, to destroy the plant without being detected. The attacker can feed fictitious sensor readings to the controller using its estimate of the plant dynamics and mimic the legitimate plant operation. The controller, on the other hand, is constantly on the lookout for an attack; once the controller detects an attack, it immediately shuts the plant off. In the case of scalar plants, we derive an upper bound on the attacker's deception probability for any measurable control policy when the attacker uses an arbitrary learning algorithm to estimate the system dynamics. We then derive lower bounds for the attacker's deception probability for both scalar and vector plants by assuming a specific authentication test that inspects the empirical variance of the system disturbance. We also show how the controller can improve the security of the system by superimposing a carefully crafted privacy-enhancing signal on top of the "nominal control policy." Finally, for nonlinear scalar dynamics that belong to the Reproducing Kernel Hilbert Space (RKHS), we investigate the performance of attacks based on nonlinear Gaussian-processes (GP) learning algorithms

    Information Flow for Security in Control Systems

    Full text link
    This paper considers the development of information flow analyses to support resilient design and active detection of adversaries in cyber physical systems (CPS). The area of CPS security, though well studied, suffers from fragmentation. In this paper, we consider control systems as an abstraction of CPS. Here, we extend the notion of information flow analysis, a well established set of methods developed in software security, to obtain a unified framework that captures and extends system theoretic results in control system security. In particular, we propose the Kullback Liebler (KL) divergence as a causal measure of information flow, which quantifies the effect of adversarial inputs on sensor outputs. We show that the proposed measure characterizes the resilience of control systems to specific attack strategies by relating the KL divergence to optimal detection techniques. We then relate information flows to stealthy attack scenarios where an adversary can bypass detection. Finally, this article examines active detection mechanisms where a defender intelligently manipulates control inputs or the system itself in order to elicit information flows from an attacker's malicious behavior. In all previous cases, we demonstrate an ability to investigate and extend existing results by utilizing the proposed information flow analyses

    Detection of replay attacks in cyber-physical systems using a frequency-based signature

    Get PDF
    This paper proposes a frequency-based approach for the detection of replay attacks affecting cyber-physical systems (CPS). In particular, the method employs a sinusoidal signal with a time-varying frequency (authentication signal) into the closed-loop system and checks whether the time profile of the frequency components in the output signal are compatible with the authentication signal or not. In order to carry out this target, the couplings between inputs and outputs are eliminated using a dynamic decoupling technique based on vector fitting. In this way, a signature introduced on a specific input channel will affect only the output that is selected to be associated with that input, which is a property that can be exploited to determine which channels are being affected. A bank of band-pass filters is used to generate signals whose energies can be compared to reconstruct an estimation of the time-varying frequency profile. By matching the known frequency profile with its estimation, the detector can provide the information about whether a replay attack is being carried out or not. The design of the signal generator and the detector are thoroughly discussed, and an example based on a quadruple-tank process is used to show the application and effectiveness of the proposed method.Peer ReviewedPostprint (author's final draft

    Attack-Resilient Supervisory Control of Discrete-Event Systems

    Full text link
    In this work, we study the problem of supervisory control of discrete-event systems (DES) in the presence of attacks that tamper with inputs and outputs of the plant. We consider a very general system setup as we focus on both deterministic and nondeterministic plants that we model as finite state transducers (FSTs); this also covers the conventional approach to modeling DES as deterministic finite automata. Furthermore, we cover a wide class of attacks that can nondeterministically add, remove, or rewrite a sensing and/or actuation word to any word from predefined regular languages, and show how such attacks can be modeled by nondeterministic FSTs; we also present how the use of FSTs facilitates modeling realistic (and very complex) attacks, as well as provides the foundation for design of attack-resilient supervisory controllers. Specifically, we first consider the supervisory control problem for deterministic plants with attacks (i) only on their sensors, (ii) only on their actuators, and (iii) both on their sensors and actuators. For each case, we develop new conditions for controllability in the presence of attacks, as well as synthesizing algorithms to obtain FST-based description of such attack-resilient supervisors. A derived resilient controller provides a set of all safe control words that can keep the plant work desirably even in the presence of corrupted observation and/or if the control words are subjected to actuation attacks. Then, we extend the controllability theorems and the supervisor synthesizing algorithms to nondeterministic plants that satisfy a nonblocking condition. Finally, we illustrate applicability of our methodology on several examples and numerical case-studies
    corecore