10 research outputs found

    Spectral transmittance model for stacks of transparencies printed with halftone colors

    No full text
    International audienceThe present work investigates the transmission of light through stacks of halftone printed transparencies. We propose a spectral transmittance model describing the multiple reflections of light between the transparencies, whose individual reflectance and transmittance have themselves been obtained by a prediction model. The model for single printed transparency involves the multiple reflections of light between the interfaces as well as the orientation-dependent attenuations of light within the plastic and ink layers. A procedure enables converting the nominal ink surface coverages into effective ones by taking into account the spreading of the inks. Calibration of the model is based on printing a small number of color patches on one transparency and measuring their spectral transmittance. Regarding the stacks of transparencies, an experimental test carried out with inkjet printed samples shows good agreement between predictions and measurements for stacks of two, three and four transparencies. Stochastic halftones are used in order to avoid the apparition of moiré patterns when superposing the halftones. By inversion of the model, we are able to determine the halftone colors to print on each transparency in order to obtain by superposition one targeted color. An original application of this, called "color matching", consists in producing one color of stack from various combinations of colors on the transparencies. The prediction accuracy of the proposed model guarantees the good visual uniformity of the resulting colored area

    Two-out-of-two color matching based visual cryptography schemes

    No full text
    International audienceVisual cryptography which consists in sharing a secret message between transparencies has been extended to color prints. In this paper, we propose a new visual cryptography scheme based on color matching. The stacked printed media reveal a uniformly colored message decoded by the human visual system. In contrast with the previous color visual cryptography schemes, the proposed one enables to share images without pixel expansion and to detect a forgery as the color of the message is kept secret. In order to correctly print the colors on the media and to increase the security of the scheme, we use spectral models developed for color reproduction describing printed colors from an optical point of view

    Floating Points: A Method for Computing Stipple Drawings

    Full text link

    Digital facial engraving

    Get PDF
    This contribution introduces the basic techniques for digital facial engraving, which imitates traditional copperplate engraving. Inspired by traditional techniques, we first establish a set of basic rules thanks to which separate engraving layers are built on the top of the original photo. Separate layers are merged according to simple merging rules and according to range shift/scale masks specially introduced for this purpose. We illustrate the introduced technique by a set of black/white and color engravings, showing different features such as engraving-specific image enhancements, mixing different regular engraving lines with mezzotint, irregular perturbations of engraving lines etc. We introduce the notion of engraving style which comprises a set of separate engraving layers together with a set of associated range shift/scale masks. The engraving style helps to port the look and feel of one engraving to another. Once different libraries of pre-defined mappable engraving styles and an appropriate user interface are added to the basic system, producing a decent gravure starting from a simple digital photo will be a matter of seconds. The engraving technique described in this contribution opens new perspectives for digital art, adding unprecedented power and precision to the engraver's work

    Two-flux and multiflux matrix models for colored surfaces

    No full text
    International audienceThis paper presents various extensions of the so-called two-flux models for prediction of reflectance and transmittance of diffusing media, i.e. the ubelka-Munk model, and the extension of Kubelka-Munk for stacks of diffusing layers. A first matrix formulation of the Kubelka-Munk differential equations leads to a matrix framework based on transfer matrices, which can be extended to stacks of diffusing layers, stacks of nonscattering films, and stacks of scattering and non-scatterings films as a generalization of the Williams-Clapper model for prediction of the reflectance of paper photographs, each of these configurations being illustrated through various examples. This paper also exposes the limitsof the two flux approach and shows that the matrix formalism extends in a straightforward manner to multiflux models, where the size of the matrices is increased

    Wholetoning: Synthesizing Abstract Black-and-White Illustrations

    Get PDF
    Black-and-white imagery is a popular and interesting depiction technique in the visual arts, in which varying tints and shades of a single colour are used. Within the realm of black-and-white images, there is a set of black-and-white illustrations that only depict salient features by ignoring details, and reduce colour to pure black and white, with no intermediate tones. These illustrations hold tremendous potential to enrich decoration, human communication and entertainment. Producing abstract black-and-white illustrations by hand relies on a time consuming and difficult process that requires both artistic talent and technical expertise. Previous work has not explored this style of illustration in much depth, and simple approaches such as thresholding are insufficient for stylization and artistic control. I use the word wholetoning to refer to illustrations that feature a high degree of shape and tone abstraction. In this thesis, I explore computer algorithms for generating wholetoned illustrations. First, I offer a general-purpose framework, “artistic thresholding”, to control the generation of wholetoned illustrations in an intuitive way. The basic artistic thresholding algorithm is an optimization framework based on simulated annealing to get the final bi-level result. I design an extensible objective function from our observations of a lot of wholetoned images. The objective function is a weighted sum over terms that encode features common to wholetoned illustrations. Based on the framework, I then explore two specific wholetoned styles: papercutting and representational calligraphy. I define a paper-cut design as a wholetoned image with connectivity constraints that ensure that it can be cut out from only one piece of paper. My computer generated papercutting technique can convert an original wholetoned image into a paper-cut design. It can also synthesize stylized and geometric patterns often found in traditional designs. Representational calligraphy is defined as a wholetoned image with the constraint that all depiction elements must be letters. The procedure of generating representational calligraphy designs is formalized as a “calligraphic packing” problem. I provide a semi-automatic technique that can warp a sequence of letters to fit a shape while preserving their readability

    Stochastic Clustered-Dot Dithering

    Get PDF
    A new technique for building stochastic clustered-dot screens is being proposed. A large dither matrix comprising thousands of stochastically laid out screen dots is constructed by first laying out the screen dot centers. Screen dot centers are obtained by placing discrete disks of a chosen radius at free cell locations when traversing the dither array cells according to either a discretely rotated Hilbert space-filling curve or a random space-filling curve. After Delauney triangulation of the screen dot centers, the maximal surface of each screen dot is computed and iso-intensity regions are created. This iso-intensity map is converted into an anti-aliased grayscale image, i.e. into an array of preliminary threshold values. These threshold values are renumbered to obtain the threshold values of the final dither threshold array. By changing the disk radius, the screen dot size can be adapted to the characteristics of particular printing devices. Larger screen dots may improve the tone ..

    Stochastic clustered-dot dithering

    No full text

    Abstract STOCHASTIC CLUSTERED-DOT DITHERING

    No full text
    A new technique for building stochastic clustered-dot screens is being proposed. A large dither matrix comprising thousands of stochastically laid out screen dots is constructed by first laying out the screen dot centers. Screen dot centers are obtained by placing discrete disks of a chosen radius at free cell locations when traversing the dither array cells according to either a discretely rotated Hilbert space-filling curve or a random space-filling curve. After Delauney triangulation of the screen dot centers, the maximal surface of each screen dot is computed and iso-intensity regions are created. This iso-intensity map is converted into an anti-aliased grayscale image, i.e. into an array of preliminary threshold values. These threshold values are renumbered to obtain the threshold values of the final dither threshold array. By changing the disk radius, the screen dot size can be adapted to the characteristics of particular printing devices. Larger screen dots may improve the tone reproduction of printers having important dot gain

    <title>Stochastic clustered-dot dithering</title>

    No full text
    corecore