15 research outputs found

    Information Directed Sampling for Stochastic Bandits with Graph Feedback

    Full text link
    We consider stochastic multi-armed bandit problems with graph feedback, where the decision maker is allowed to observe the neighboring actions of the chosen action. We allow the graph structure to vary with time and consider both deterministic and Erd\H{o}s-R\'enyi random graph models. For such a graph feedback model, we first present a novel analysis of Thompson sampling that leads to tighter performance bound than existing work. Next, we propose new Information Directed Sampling based policies that are graph-aware in their decision making. Under the deterministic graph case, we establish a Bayesian regret bound for the proposed policies that scales with the clique cover number of the graph instead of the number of actions. Under the random graph case, we provide a Bayesian regret bound for the proposed policies that scales with the ratio of the number of actions over the expected number of observations per iteration. To the best of our knowledge, this is the first analytical result for stochastic bandits with random graph feedback. Finally, using numerical evaluations, we demonstrate that our proposed IDS policies outperform existing approaches, including adaptions of upper confidence bound, Ο΅\epsilon-greedy and Exp3 algorithms.Comment: Accepted by AAAI 201

    Stochastic Online Learning with Probabilistic Graph Feedback

    Full text link
    We consider a problem of stochastic online learning with general probabilistic graph feedback, where each directed edge in the feedback graph has probability pijp_{ij}. Two cases are covered. (a) The one-step case, where after playing arm ii the learner observes a sample reward feedback of arm jj with independent probability pijp_{ij}. (b) The cascade case where after playing arm ii the learner observes feedback of all arms jj in a probabilistic cascade starting from ii -- for each (i,j)(i,j) with probability pijp_{ij}, if arm ii is played or observed, then a reward sample of arm jj would be observed with independent probability pijp_{ij}. Previous works mainly focus on deterministic graphs which corresponds to one-step case with pij∈{0,1}p_{ij} \in \{0,1\}, an adversarial sequence of graphs with certain topology guarantees, or a specific type of random graphs. We analyze the asymptotic lower bounds and design algorithms in both cases. The regret upper bounds of the algorithms match the lower bounds with high probability
    corecore