3,950 research outputs found

    Stochastic Model Predictive Control with Dynamic Chance Constraints

    Full text link
    In this work, we introduce a stochastic model predictive control scheme for dynamic chance constraints. We consider linear discrete-time systems affected by unbounded additive stochastic disturbance and subject to chance constraints that are defined by time-varying probabilities with a common, fixed lower bound. By utilizing probabilistic reachable tubes with dynamic cross-sections, we are reformulating the stochastic optimization problem into a deterministic tube-based MPC problem with time-varying tightened constraints. We show that the resulting deterministic MPC formulation with dynamic tightened constraints is recursively feasible and that the closed-loop stochastic system will satisfy the corresponding dynamic chance constraints. In addition, we will also introduce a novel implementation using zonotopes to describe the tightening analytically. Finally, we will end with an example to illustrate the benefits of the developed approach to stochastic MPC with dynamic chance constraints.Comment: 8 pages, 3 figure

    An Improved Constraint-Tightening Approach for Stochastic MPC

    Full text link
    The problem of achieving a good trade-off in Stochastic Model Predictive Control between the competing goals of improving the average performance and reducing conservativeness, while still guaranteeing recursive feasibility and low computational complexity, is addressed. We propose a novel, less restrictive scheme which is based on considering stability and recursive feasibility separately. Through an explicit first step constraint we guarantee recursive feasibility. In particular we guarantee the existence of a feasible input trajectory at each time instant, but we only require that the input sequence computed at time kk remains feasible at time k+1k+1 for most disturbances but not necessarily for all, which suffices for stability. To overcome the computational complexity of probabilistic constraints, we propose an offline constraint-tightening procedure, which can be efficiently solved via a sampling approach to the desired accuracy. The online computational complexity of the resulting Model Predictive Control (MPC) algorithm is similar to that of a nominal MPC with terminal region. A numerical example, which provides a comparison with classical, recursively feasible Stochastic MPC and Robust MPC, shows the efficacy of the proposed approach.Comment: Paper has been submitted to ACC 201

    Robust Model Predictive Control via Scenario Optimization

    Full text link
    This paper discusses a novel probabilistic approach for the design of robust model predictive control (MPC) laws for discrete-time linear systems affected by parametric uncertainty and additive disturbances. The proposed technique is based on the iterated solution, at each step, of a finite-horizon optimal control problem (FHOCP) that takes into account a suitable number of randomly extracted scenarios of uncertainty and disturbances, followed by a specific command selection rule implemented in a receding horizon fashion. The scenario FHOCP is always convex, also when the uncertain parameters and disturbance belong to non-convex sets, and irrespective of how the model uncertainty influences the system's matrices. Moreover, the computational complexity of the proposed approach does not depend on the uncertainty/disturbance dimensions, and scales quadratically with the control horizon. The main result in this paper is related to the analysis of the closed loop system under receding-horizon implementation of the scenario FHOCP, and essentially states that the devised control law guarantees constraint satisfaction at each step with some a-priori assigned probability p, while the system's state reaches the target set either asymptotically, or in finite time with probability at least p. The proposed method may be a valid alternative when other existing techniques, either deterministic or stochastic, are not directly usable due to excessive conservatism or to numerical intractability caused by lack of convexity of the robust or chance-constrained optimization problem.Comment: This manuscript is a preprint of a paper accepted for publication in the IEEE Transactions on Automatic Control, with DOI: 10.1109/TAC.2012.2203054, and is subject to IEEE copyright. The copy of record will be available at http://ieeexplore.ieee.or

    Stochastic Model Predictive Control with Discounted Probabilistic Constraints

    Full text link
    This paper considers linear discrete-time systems with additive disturbances, and designs a Model Predictive Control (MPC) law to minimise a quadratic cost function subject to a chance constraint. The chance constraint is defined as a discounted sum of violation probabilities on an infinite horizon. By penalising violation probabilities close to the initial time and ignoring violation probabilities in the far future, this form of constraint enables the feasibility of the online optimisation to be guaranteed without an assumption of boundedness of the disturbance. A computationally convenient MPC optimisation problem is formulated using Chebyshev's inequality and we introduce an online constraint-tightening technique to ensure recursive feasibility based on knowledge of a suboptimal solution. The closed loop system is guaranteed to satisfy the chance constraint and a quadratic stability condition.Comment: 6 pages, Conference Proceeding

    Stochastic Nonlinear Model Predictive Control with Efficient Sample Approximation of Chance Constraints

    Full text link
    This paper presents a stochastic model predictive control approach for nonlinear systems subject to time-invariant probabilistic uncertainties in model parameters and initial conditions. The stochastic optimal control problem entails a cost function in terms of expected values and higher moments of the states, and chance constraints that ensure probabilistic constraint satisfaction. The generalized polynomial chaos framework is used to propagate the time-invariant stochastic uncertainties through the nonlinear system dynamics, and to efficiently sample from the probability densities of the states to approximate the satisfaction probability of the chance constraints. To increase computational efficiency by avoiding excessive sampling, a statistical analysis is proposed to systematically determine a-priori the least conservative constraint tightening required at a given sample size to guarantee a desired feasibility probability of the sample-approximated chance constraint optimization problem. In addition, a method is presented for sample-based approximation of the analytic gradients of the chance constraints, which increases the optimization efficiency significantly. The proposed stochastic nonlinear model predictive control approach is applicable to a broad class of nonlinear systems with the sufficient condition that each term is analytic with respect to the states, and separable with respect to the inputs, states and parameters. The closed-loop performance of the proposed approach is evaluated using the Williams-Otto reactor with seven states, and ten uncertain parameters and initial conditions. The results demonstrate the efficiency of the approach for real-time stochastic model predictive control and its capability to systematically account for probabilistic uncertainties in contrast to a nonlinear model predictive control approaches.Comment: Submitted to Journal of Process Contro
    • …
    corecore