6,488 research outputs found

    Characterization of Information Channels for Asymptotic Mean Stationarity and Stochastic Stability of Non-stationary/Unstable Linear Systems

    Full text link
    Stabilization of non-stationary linear systems over noisy communication channels is considered. Stochastically stable sources, and unstable but noise-free or bounded-noise systems have been extensively studied in information theory and control theory literature since 1970s, with a renewed interest in the past decade. There have also been studies on non-causal and causal coding of unstable/non-stationary linear Gaussian sources. In this paper, tight necessary and sufficient conditions for stochastic stabilizability of unstable (non-stationary) possibly multi-dimensional linear systems driven by Gaussian noise over discrete channels (possibly with memory and feedback) are presented. Stochastic stability notions include recurrence, asymptotic mean stationarity and sample path ergodicity, and the existence of finite second moments. Our constructive proof uses random-time state-dependent stochastic drift criteria for stabilization of Markov chains. For asymptotic mean stationarity (and thus sample path ergodicity), it is sufficient that the capacity of a channel is (strictly) greater than the sum of the logarithms of the unstable pole magnitudes for memoryless channels and a class of channels with memory. This condition is also necessary under a mild technical condition. Sufficient conditions for the existence of finite average second moments for such systems driven by unbounded noise are provided.Comment: To appear in IEEE Transactions on Information Theor

    Stabilization of Linear Systems Over Gaussian Networks

    Full text link
    The problem of remotely stabilizing a noisy linear time invariant plant over a Gaussian relay network is addressed. The network is comprised of a sensor node, a group of relay nodes and a remote controller. The sensor and the relay nodes operate subject to an average transmit power constraint and they can cooperate to communicate the observations of the plant's state to the remote controller. The communication links between all nodes are modeled as Gaussian channels. Necessary as well as sufficient conditions for mean-square stabilization over various network topologies are derived. The sufficient conditions are in general obtained using delay-free linear policies and the necessary conditions are obtained using information theoretic tools. Different settings where linear policies are optimal, asymptotically optimal (in certain parameters of the system) and suboptimal have been identified. For the case with noisy multi-dimensional sources controlled over scalar channels, it is shown that linear time varying policies lead to minimum capacity requirements, meeting the fundamental lower bound. For the case with noiseless sources and parallel channels, non-linear policies which meet the lower bound have been identified

    Error Correcting Codes for Distributed Control

    Get PDF
    The problem of stabilizing an unstable plant over a noisy communication link is an increasingly important one that arises in applications of networked control systems. Although the work of Schulman and Sahai over the past two decades, and their development of the notions of "tree codes"\phantom{} and "anytime capacity", provides the theoretical framework for studying such problems, there has been scant practical progress in this area because explicit constructions of tree codes with efficient encoding and decoding did not exist. To stabilize an unstable plant driven by bounded noise over a noisy channel one needs real-time encoding and real-time decoding and a reliability which increases exponentially with decoding delay, which is what tree codes guarantee. We prove that linear tree codes occur with high probability and, for erasure channels, give an explicit construction with an expected decoding complexity that is constant per time instant. We give novel sufficient conditions on the rate and reliability required of the tree codes to stabilize vector plants and argue that they are asymptotically tight. This work takes an important step towards controlling plants over noisy channels, and we demonstrate the efficacy of the method through several examples.Comment: 39 page

    Linear feedback stabilization of a dispersively monitored qubit

    Get PDF
    The state of a continuously monitored qubit evolves stochastically, exhibiting competition between coherent Hamiltonian dynamics and diffusive partial collapse dynamics that follow the measurement record. We couple these distinct types of dynamics together by linearly feeding the collected record for dispersive energy measurements directly back into a coherent Rabi drive amplitude. Such feedback turns the competition cooperative, and effectively stabilizes the qubit state near a target state. We derive the conditions for obtaining such dispersive state stabilization and verify the stabilization conditions numerically. We include common experimental nonidealities, such as energy decay, environmental dephasing, detector efficiency, and feedback delay, and show that the feedback delay has the most significant negative effect on the feedback protocol. Setting the measurement collapse timescale to be long compared to the feedback delay yields the best stabilization.Comment: 16 pages, 7 figure
    corecore