
Chapman University
Chapman University Digital Commons
Mathematics, Physics, and Computer Science
Faculty Articles and Research

Science and Technology Faculty Articles and
Research

8-14-2017

Linear Feedback Stabilization of a Dispersively
Monitored Qubit
Taylor Lee Patti
Chapman University, patti102@mail.chapman.edu

Areeya Chantasri
University of Rochester

Luis Pedro García-Pintos
Chapman University

Andrew N. Jordan
University of Rochester

Justin Dressel
Chapman University, dressel@chapman.edu

Follow this and additional works at: http://digitalcommons.chapman.edu/scs_articles

Part of the Quantum Physics Commons

This Article is brought to you for free and open access by the Science and Technology Faculty Articles and Research at Chapman University Digital
Commons. It has been accepted for inclusion in Mathematics, Physics, and Computer Science Faculty Articles and Research by an authorized
administrator of Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu.

Recommended Citation
Patti, T.L., Chantasri, A., García-Pintos, L.P., Jordan, A.N., Dressel, J., 2017. Linear feedback stabilization of a dispersively monitored
qubit. Phys. Rev. A 96, 022311. doi:10.1103/PhysRevA.96.022311

http://digitalcommons.chapman.edu?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/science_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/science_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/206?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu


Linear Feedback Stabilization of a Dispersively Monitored Qubit

Comments
This article was originally published in Physical Review A, volume 96, in 2017. DOI: 10.1103/
PhysRevA.96.022311

Copyright
American Physical Society

This article is available at Chapman University Digital Commons: http://digitalcommons.chapman.edu/scs_articles/511

http://dx.doi.org/10.1103/PhysRevA.96.022311
http://dx.doi.org/10.1103/PhysRevA.96.022311
http://digitalcommons.chapman.edu/scs_articles/511?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages


PHYSICAL REVIEW A 96, 022311 (2017)

Linear feedback stabilization of a dispersively monitored qubit

Taylor Lee Patti,1,2,3 Areeya Chantasri,4,5,6 Luis Pedro García-Pintos,1,2 Andrew N. Jordan,2,4,5 and Justin Dressel1,2

1Schmid College of Science and Technology, Chapman University, Orange, California 92866, USA
2Institute for Quantum Studies, Chapman University, Orange, California 92866, USA
3Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

4Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
5Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA

6Centre for Quantum Dynamics, Griffith University, Nathan, Queensland 4111, Australia
(Received 24 May 2017; published 14 August 2017)

The state of a continuously monitored qubit evolves stochastically, exhibiting competition between coherent
Hamiltonian dynamics and diffusive partial collapse dynamics that follow the measurement record. We couple
these distinct types of dynamics together by linearly feeding the collected record for dispersive energy
measurements directly back into a coherent Rabi drive amplitude. Such feedback turns the competition cooperative
and effectively stabilizes the qubit state near a target state. We derive the conditions for obtaining such
dispersive state stabilization and verify the stabilization conditions numerically. We include common experimental
nonidealities, such as energy decay, environmental dephasing, detector efficiency, and feedback delay, and show
that the feedback delay has the most significant negative effect on the feedback protocol. Setting the measurement
collapse time scale to be long compared to the feedback delay yields the best stabilization.

DOI: 10.1103/PhysRevA.96.022311

I. INTRODUCTION

Modern efforts to build a quantum computer have recently
enabled the time-continuous measurement of quantum state
trajectories [1–4] using superconducting circuit quantum-
electrodynamics (cQED) [5–7]. For quantum nondemolition
(QND) measurements, such as dispersive transmon energy
level measurements [8], a time-continuous noisy signal grad-
ually reveals information over time about the stationary eigen-
states of the measurement. Learning this information causes
a gradual collapse of the qubit state over time to one of the
eigenstates of the measurement, which can be observed [9–11]
by processing the noisy measurement record. Notably, such
gradual collapse is not monotonic, but rather stochastic, with
some temporal increments effectively erasing the information
gathered by previous increments and “uncollapsing” the state
[12–15]. Nevertheless, the random walk of the qubit state does
eventually fully collapse to one of the measurement eigen-
states, where it remains. Continuing to monitor an eigenstate
after collapse helps protect it from environmental decay due
to the quantum Zeno effect [16–18], which suppresses other
coherent evolution via continual recollapse.

The stochastic collapse evolution from continuous moni-
toring generally competes with other coherent Hamiltonian
evolution, which produces complicated state dynamics that
have rich statistical correlations [19–26]. Similarly, simul-
taneously monitoring multiple noncommuting observables
produces nontrivial competitive dynamics [27–30]. In either
case, collapse to a stable eigenstate is prevented. Remarkably,
it has been shown that such dynamical competition can be
made cooperative by feeding a suitably processed noisy read-
out back into the controlled Hamiltonian dynamics [31–43].
Similar to classical control theory, the random perturbations
induced by the stochastic dynamics can be compensated by the
adaptive control Hamiltonian to produce customized dynamics
that approximate a desired outcome. Unlike classical control
theory, such measurement-based quantum feedback control

can fundamentally leverage the peculiarities of quantum state
collapse in ways that have no classical analog [44]. For
example, quantum states may be more rapidly purified through
a clever application of feedback [45–50]. A variety of quantum
feedback control schemes have been implemented within the
past six years, including photon number state preparation
[51], continuous superconducting Rabi oscillation stabiliza-
tion [52], discrete feedback control of superconducting qubits
[53,54], entangled state generation [55–59], discrete reversal
of continuous random phase drift [60], and continuous qubit
state stabilization via both dissipative bath engineering [61]
and feedback from fluorescence measurements [62].

In this paper, we theoretically revisit the latter task of state
stabilization, but for a transmon qubit undergoing continuous
linear feedback of a dispersive energy measurement record in
a realistically modeled environment that includes dephasing,
energy decay, measurement inefficiency, signal filtering, and
feedback delay. The goal of such a stabilization protocol is to
effectively alter the eigenstates of the measurement collapse to
target an arbitrary desired state, while preserving the main fea-
tures of the quantum Zeno effect that protect that state against
deterioration from environmental factors. Unlike previously
considered dissipative bath engineering [61] or fluorescence-
based feedback [35,62] methods, such dispersive feedback is
based on a fundamentally QND measurement. As such, the
symmetry of the non-feedback-collapse dynamics alters the
permissible state stabilization regions dramatically from those
produced by the asymmetric backaction of environmental
dissipation or energy decay from fluorescence. The QND
nature of the dispersive measurement also makes it natural
to compare the differences between ensemble-average state
stabilization and individual trajectory stabilization. We thus
pose the stabilization problem in two contrasting ways: First,
we suppose an experimenter only knows the applied feedback
parameters and does not monitor individual measurement
records, and so can only prepare a targeted ensemble-averaged
state on demand using feedback. Second, we suppose the
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experimenter also processes each measurement record to have
more detailed information about individual quantum state tra-
jectories and so can choose whether a particular state is suitably
prepared on demand. We include environmental effects in our
analysis with parameters chosen to be consistent with current
experimental technology for dispersive transmon trajectory
measurements [9,10,19,28].

In the Markovian case with no signal filtering or feedback
delay, we solve the two variations of the problem analytically
and verify the results numerically. We find that in the ideal
case with no environmental effects, both ways of posing the
problem coincide: Any angle in the qubit Bloch sphere may
be perfectly targeted by a suitable choice of linear feedback
parameters. When environmental effects are added (neglecting
feedback delay and signal filtering), we find that the two
variations still coincide provided the feedback parameters are
optimally chosen. That is, targeting any angle in the Bloch
sphere with maximum ensemble-averaged purity is equivalent
to stabilizing individual trajectories such that their measure-
ment backaction is minimized. We find that all angles not too
near the natural measurement pole corresponding to the excited
qubit state may still be targeted with high purity, and solve for
the feedback parameters needed to obtain each such state.
Notably, while the ensemble-averaged purity remains nearly
constant, the distributions of individual trajectories spread
asymmetrically near the measurement poles, developing peaks
of maximum probability with higher purity than the ensemble
average. For stabilized states at the equator of the Bloch sphere,
the maximum probability peak coincides with the ensemble-
averaged state. For stabilized states near the excited-state
measurement pole, the maximum probability peak bifurcates
into two distinct regions, with one dominant, such that each
region is substantially more pure than the ensemble-average
state. As a result, the two ways of posing the stabilization
problem have distinct solutions for states near the natural
measurement poles. For stabilized states near the ground-state
measurement pole, both the ensemble average and peak purify
due to energy-relaxation environmental effects.

Once signal filtering and feedback delay are included, the
dynamics become intrinsically non-Markovian due to the delay
buffer. We investigate these effects numerically. Compared to
the Markovian case, we find that the stabilization is minimally
degraded by single-pole (RC) low-pass filtering of the signal,
so the protocol appears robust to realistic frequency-filtering
effects in the feedback circuitry. We also find that feedback
delay has the largest negative effect on the protocol, causing a
dramatic reduction in stabilization purity as the delay becomes
comparable to the measurement collapse time scale. This sen-
sitivity to delay agrees with the feedback analysis performed
for stabilized Rabi oscillations of a double-quantum-dot setup
in Ref. [38]. In our case, the trajectory distributions rapidly
broaden with delay since the delayed signal being fed back
into the controller has diminished relevance for the later state
evolution that is being controlled. Nevertheless, the effect of
delay can be mitigated by slowing the measurement rate to
keep the collapse time scale an order of magnitude longer
than the delay in the feedback circuitry. Curiously, despite the
fact that in the Markovian case the Bloch sphere equator can
be stabilized, we find that any amount of filtering or delay
destabilizes a sharp angular region around the equator, which

then becomes consistent with the instability observed at the
equator in fluorescence-based protocols [35,62]. In summary,
most angles in the qubit Bloch sphere may be stabilized with
high purity even when realistic models of the environment and
feedback circuitry are taken into account.

The paper is organized as follows. In Sec. II, we detail the
modeling of the dispersive qubit monitoring with feedback
for both idealized and realistic situations. In Sec. III, we pose
the problem of ensemble-averaged qubit state stabilization and
discuss both analytical results and numerical simulations. In
Sec. IV, we pose the related problem of state stabilization for
individual qubit trajectories and discuss both analytical results
and numerical simulations. We conclude in Sec. V.

II. FEEDBACK MODEL

For concreteness, we consider a superconducting transmon
qubit that is dispersively coupled to a microwave resonator
as the measuring apparatus [5–8]. The qubit Hamiltonian
describing the lowest two levels of the transmon is Ĥq =
h̄ωq σ̂z/2, where the Pauli operator σ̂z = |1〉〈1| − |0〉〈0| in-
dicates the difference between the excited (|1〉) and ground
(|0〉) state energy levels, and ωq is the natural qubit frequency.
We will work in the rotating frame of the qubit in what
follows for simplicity to neglect this natural evolution. The
Hamiltonian of the coupled microwave resonator mode is
harmonic Ĥr = h̄ωr â†â, where â is its lowering operator and
ωr is the natural resonator frequency that is detuned from the
qubit. The dispersive coupling Hamiltonian between the qubit
and resonator then approximates Ĥqr = h̄χ σ̂z â†â, where ±χ

is the qubit-state-dependent frequency shift of the resonator
due to the dispersive coupling. The resonator has energy-
decay rate κ and is pumped on resonance with a coherent
field to reach a qubit-state-dependent coherent steady state
with qubit-state-independent average photon number n̄. The
steady-state microwave field then leaks from the resonator and
travels down a transmission line, where it is amplified along the
maximally informative quadrature [6,7] with a phase-sensitive
amplifier and finally measured to produce a time-continuous
homodyne signal I (t). Due to the entanglement with the leaked
microwave field, definite qubit states |0〉 and |1〉 produce
noisy homodyne signals that temporally average to distinct
mean values I0 and I1, respectively. As such, monitoring
the homodyne signal provides time-continuous information
about the qubit energy basis. On average, these homodyne
measurements decohere the qubit state at the ensemble-
averaged measurement-dephasing rate �m = 8χ2n̄/κ [5–7],
which may be determined experimentally by comparing the
Ramsey decay rates of the qubit with and without measurement
[9,10,19,25].

To stabilize the qubit state, we process the homodyne signal
I (t) and feed it back into the coherent qubit evolution as
a coherent Rabi drive [31–36,41,62]. For convenience, we
first rescale the signal so that it directly corresponds to σ̂z.
The rescaled readout has the form r(t) ≡ 2(I (t) − Ī )/�I ,
where Ī = (I0 + I1)/2 is the mean homodyne current, and
�I = I1 − I0 is the homodyne signal contrast. The rescaled
readout r(t) then has a temporal average of ±1 for definite
qubit energy states, in agreement with the eigenvalues of σ̂z.
Before being fed back into the controller, this rescaled readout
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is necessarily frequency filtered by the feedback circuitry [38],
r �→ r̃ , which also delays the filtered readout by a duration
Td . This filtered and delayed readout r̃(t − Td ) is then used
to modulate a coherent Rabi drive described by the control
Hamiltonian,

Ĥc = h̄[�0 + �1 r̃(t − Td )]
σ̂φ

2
, (1)

where σ̂φ = cos φ σ̂x + sin φ σ̂y , with σ̂x = |1〉〈0| + |0〉〈1|
and σ̂y = −i |1〉〈0| + i |0〉〈1|. The choice of angle φ fixes
the plane of the qubit Bloch sphere to which the qubit
will become stabilized. For simplicity of discussion, we
now fix φ = π to choose clockwise oscillations in the yz

plane. This feedback Hamiltonian induces oscillations at a
constant Rabi frequency �0 that is modulated by the linear
feedback term �1 r̃(t − Td ). As we will show, and in agree-
ment with fluorescence-based feedback stabilization protocols
[35,36,41,62], the two parameters �0 and �1 completely
control the effect of the feedback by jointly determining the
attraction region in state space for stabilization. In contrast to
the fluorescence-based protocols that have a bias toward the
ground state, we will show that dispersive measurements can
stabilize nearly any angle within the chosen plane with high
purity (i.e., nearly any pure state may be targeted with high
fidelity).

We now describe the qubit evolution produced by collecting
the dispersive readout r(t) and applying the feedback Hamil-
tonian in Eq. (1). We first consider a time-discrete quantum
Bayesian model [6,7], from which we can numerically simu-
late the feedback protocol including inefficiencies and delay.
We then consider a time-continuous stochastic master equation
model [5] that interpolates the Markovian feedback dynamics
in the limit of zero delay Td → 0 (and no signal filtering) with a
fictitious time-continuous stochastic process [31–33,35,36,41]
and which is convenient for analytic derivations of the required
feedback parameters.

A. Time-discrete model

The strength of the qubit measurement is determined by
the time scale τm needed to obtain a unit signal-to-noise
ratio for distinguishing the qubit states. A qubit initially in
a superposition of energy states will typically collapse to a
definite energy state within a few τm. This collapse time scale
τm is related to the ensemble dephasing rate �m of the qubit due
to measurement according to �m = (2τmη)−1, where η ∈ [0,1]
is the quantum efficiency of the microwave detection circuitry
[6,7].

When the energy decay rate of the resonator κ is sufficiently
fast compared to both the measurement rate �m and the
dynamics of the qubit (known as the “bad cavity regime”),
the coherently pumped resonator effectively remains at steady
state. We may then approximately ignore the resonator and
phenomenologically describe the qubit evolution alone [6],
provided that we coarse grain the collected readout r(t) into
discrete segments {r̄k} that are temporal averages r̄k dt ≡∫ tk+dt

tk
r(t ′)dt ′ over time increments dt > κ−1 longer than

the relaxation time scale of the resonator field [7]. This
coarse-grained measurement evolution is then Markovian in
the discretized time intervals, and can be efficiently described

using the quantum Bayesian method [6,7], which also permits
efficient numerical simulation.

The total evolution of the qubit can be approximately
decomposed into three parts: pure measurement backaction,
coherent unitary evolution, and environmental dissipation.
These three contributions may be treated separately provided
that the duration dt is smaller than the characteristic time
scales of each evolution. We now describe each contributing
evolution, then combine them.

First, the form of the measurement backaction follows from
Bayes’ theorem and the Born rule [6]. Given empirically mea-
sured conditional probabilities P (r̄|0) and P (r̄|1) for obtaining
a result r̄ averaged over dt given a definite qubit energy state
(0 or 1), the qubit energy probabilities must update according
to Bayes’ theorem P (0) �→ P (0|r̄) = P (r̄|0)P (0)/P (r̄) and
P (1) �→ P (1|r̄) = P (r̄|1)P (1)/P (r̄), where the total proba-
bility for collecting r̄ is P (r̄) = P (r̄|0)P (0) + P (r̄|1)P (1).
This evolution is equivalent to the density operator update
rule ρ̂ �→ M̂r̄ ρ̂M̂

†
r̄ /P (r̄) with probability P (r̄) = Tr(M̂†

r̄ M̂r̄ ρ̂),
determined entirely by the Kraus operator

M̂r̄ =
√

P (r̄|0) |0〉〈0| +
√

P (r̄|1) |1〉〈1| . (2)

For a maximally informative choice of amplified quadrature,
there is no additional phase backaction on the qubit [6,7], so
this minimal Kraus operator is sufficient.

Because of the central limit theorem, the conditional prob-
abilities P (r̄|0) and P (r̄|1) approximate Gaussians centered
at ±1. For simplicity, we also assume approximately equal
variances, which may be justified empirically. To preserve
proper scaling of temporal averages as the discrete time step
dt is varied, the variances of each time step must be inversely
proportional to dt . By definition of the unit signal-to-noise
time scale τm, the variances must then have the form τm/dt ,
yielding

M̂r̄ = C(r̄)[e−r̄dt/2τm |0〉〈0| + er̄dt/2τm |1〉〈1|], (3)

where C(r̄) = (dt/2πτm)1/4e−(r̄2+1)dt/4τm is a state-
independent normalization factor that cancels in the
state update rule. Note that this Kraus operator may
be conveniently written M̂r̄ = C(r̄) exp(r̄dt σ̂z/2τm) =
C(r̄)[cosh(r̄dt/2τm)1̂ + sinh(r̄dt/2τm)σ̂z], with 1̂ = |0〉〈0| +
|1〉〈1|. The rate (2τm)−1 that appears here is the
ensemble-average dephasing rate obtained after averaging
over all collected signal r̄ .

Second, the form of the unitary dynamics follows from
the control Hamiltonian Ĥc in Eq. (1) with φ = π , which
describes precession in the yz plane of the qubit Bloch
sphere. Treating the coherent evolution independently yields
the unitary operator Û = exp(−idtĤc/h̄) that simplifies to the
convenient form

Û = eidt� σ̂x/2 = cos(�dt/2)1̂ + i sin(�dt/2)σ̂x (4)

with a frequency � = �0 + �1 ˜̄r(t − Td ) that depends upon
the filtered average readout ˜̄r(t − Td ) collected from a time
delay Td = nd dt of nd time steps in the past and fed
back into the controller during the current time interval dt .
The nonzero feedback delay makes the resulting dynamics
intrinsically non-Markovian. Additional frequency filtering
from the feedback circuitry [38] is discretely modeled by a
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recursive transformation of the history of raw average readouts
{r̄k} stored in a memory buffer (see Sec. III C for more detail).

Third, we consider the most common forms of environ-
mental dissipation: energy relaxation, energy dephasing, and
detector inefficiency. Energy relaxation follows a phenomeno-
logical decay rate 1/T1 for the excited state to relax into
the ground state. Defining the density operator matrix ele-
ments as P0 = 〈0| ρ̂ |0〉 , P1 = 〈1| ρ̂ |1〉, and ρ01 = 〈0| ρ̂ |1〉 =
ρ∗

10 ∝ √
P0P1, energy decay yields the transformation P1 �→

P1 exp(−dt/T1), which forces P0 �→ 1 − P1 exp(−dt/T1) and
ρ01 �→ ρ01 exp(−dt/2T1). We summarize these rules with
the energy-decay map ρ̂ �→ ET1 (ρ̂). Similarly, environmen-
tal energy dephasing follows a phenomenological decay
rate 1/T2 and corresponds to the transformation ρ01 �→
ρ01 exp(−dt/T2), summarized by the dephasing map ρ̂ �→
ET2 (ρ̂). The detector inefficiency (1 − η) describes the fraction
of measured qubit information that has been lost to the envi-
ronment, thus producing residual measurement dephasing on
average with rate γ = �m − 1/2τm = (1 − η)/(2τmη), which
is summarized by the map ρ̂ �→ Eγ (ρ̂) that dephases in a
similar way to ET2 ; i.e., ρ01 �→ ρ01 exp(−γ dt).

The total state update is then approximately described by
the composite map

ρ̂(t + dt) = (Eγ ◦ ET2 ◦ ET1 )

[
ÛM̂r̄ ρ̂(t)M̂†

r̄ Û
†

Tr(M̂†
r̄ M̂ r̄ ρ̂(t))

]
, (5)

where all operations are described at time t . This separation
of the evolution into distinct pieces is formally valid to linear
order in dt , but (unlike explicitly linear-order updates) ensures
completely positive evolution of the state.

To minimize accumulated error from the composition
approximation in Eqs. (A1) and (5), the time step should
satisfy dt/τm  1, dt �  1, and dt �m  1. In particu-
lar, since the noisy feedback signal ˜̄r(t − Td ) will likely
dominate the rate � = �0 + �1 ˜̄r(t − Td ), it should satisfy
dt ˜̄r �1  1. Since r̄ � 5

√
τm/dt by Gaussian statistics, this

implies dt ˜̄r �1 < 5�1
√

dt τm  1, so �1  1/(5
√

dt τm) is
a practical upper bound for �1 for a chosen time step dt in
Eq. (5). We also note that the chosen ordering of operations,
in particular measurement backaction followed by feedback
control, is made to anticipate the Markovian feedback limit
with vanishing delay (Td → 0) in the next section.

To efficiently simulate Eq. (5) numerically, we use a
Bloch coordinate decomposition of the state, ρ̂ → (x,y,z),
where x = Tr(σ̂x ρ̂), y = Tr(σ̂y ρ̂), and z = Tr(σ̂z ρ̂). With this
representation, the rescaled average readout r̄ at each time t

may be sampled from the readout distribution

P (r̄) = Tr(M̂†
r̄ M̂r̄ ρ̂) = P0 P (r̄|0) + P1 P (r̄|1)

≈ exp(−dt(r̄ − z)2/2τm)√
2πτm/dt

, (6)

where the single-Gaussian approximation makes numerical
sampling efficient. After generating each r̄ , the update in
Eq. (5) is applied, using the previously sampled, time-delayed,
and filtered ˜̄r as appropriate in the feedback unitary.

Expressed in Bloch coordinates, Eq. (5) has a simple
prescription: Given the state (xn,yn,zn) and a random r̄

sampled at time step tn, as well as a filtered ˜̄rn−nd
from time

step tn − Td with Td = nd dt , the new state (xn+1,yn+1,zn+1)
at time tn+1 = tn + dt is obtained by the following sequence
of transformations:

pn = cosh(r̄dt/τm) + zn sinh(r̄dt/τm),

x ′
n = xn/pn,

y ′
n = yn/pn,

z′
n = [zn cosh(r̄dt/τm) + sinh(r̄dt/τm)]/pn,

� = �0 + �1 ˜̄rn−nd
,

y ′′
n = y ′

n cos(dt�) + z′
n sin(dt�),

z′′
n = z′

n cos(dt�) − y ′
n sin(dt�),

xn+1 = x ′
n e−dt/2T1−dt/T2−dt(1−η)/2τmη,

yn+1 = y ′′
n e−dt/2T1−dt/T2−dt(1−η)/2τmη,

zn+1 = z′′
n e−dt/T1 − (1 − e−dt/T1 ). (7)

Note that the normalization factor pn is proportional to the
probability for sampling r̄ , but irrelevant constants have been
canceled. At the start of each simulated evolution, there is no
presampled readout history, so we treat the applied feedback
˜̄rn−nd

as zero in the update until the feedback delay buffer
has been filled. For simplicity, we set x = 0 initially, which
constrains the dynamics to the yz plane.

B. Time-continuous model

For analytic convenience, the time-continuum limit dt → 0
can be used to derive stochastic master equations (SMEs) from
the update equation Eq. (5) in the Markovian feedback limit
with Td → 0. Note that this limit formally produces a phys-
ically incorrect model for two reasons: First, dt > κ−1 must
be satisfied to phenomenologically ignore the relaxation of the
resonator to its steady state. The continuum limit thus implies
a resonator with infinitely fast energy decay, κ → ∞, which
would produce no qubit measurement, since �m ∝ κ−1 → 0.
Second, Td > 0 in any realistic laboratory feedback control
loop due to finite signal velocity and controller processing
time, so the limit Td → 0 is unrealizable. Nevertheless, this
Markovian feedback continuum limit still formally produces a
useful interpolation of the discretized dynamics in the preced-
ing section as an idealized time-continuous stochastic process
that may be more easily analyzed [5]. That is, averaging this
fictitious process over time bins dt > κ−1 should still recover
the physically correct time-discretized evolution. In particular,
it is simple to obtain a master equation (ME) describing the
ensemble-averaged behavior from such an SME. It is also a
good approximation when the delay is short compared to the
intrinsic collapse time of the measurement, Td  τm. Indeed,
such a separation of time scales is always implied by such
time-continuous stochastic equations of motion [1,2].

Stochastic processes are not differentiable. Thus, a careful
treatment is needed to derive the differential equations for the
evolution [1]. There are two popular pictures for stochastic
differential equations, Itô and Stratonovich, the former having
the advantage that the stochastic noise at any time t is
independent from the process in which it occurs (see Ref. [1]
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and Appendix B of Ref. [3]). This advantage makes finding
the ME for ensemble-averaged evolution straightforward in
the Itô picture, so we opt for that approach here.

Following the Itô formalism, we observe that Eq. (6) may be
written as P (r̄) = P (dW )dt/

√
τm, with the zero-mean Gaus-

sian distribution P (dW ) = exp(−dW 2/2dt)/
√

2πdt having
variance dt , provided that we make the identification r̄ dt =
z dt + √

τm dW . The random variable dW then has the prop-
erties of a Wiener increment, so that the identity dW 2 = dt

becomes exact in the continuum limit dt → 0 [1]. As such,
we can interpolate the coarse-grained time-dependent readout
as a moving-mean stochastic process

r̄(t) = z(t) + √
τm ξ (t) (8)

centered at z(t) with additive white noise ξ (t) = dW/dt

with zero mean 〈ξ (t)〉 = 0 and Dirac-δ temporal correlation
〈ξ (t)ξ (t ′)〉 = δ(t − t ′).

We can now expand the right-hand side of the update
equation Eq. (5) to first order of dt while adhering to the Itô
rule dW 2 = dt and assuming Td → 0 (implying the filtered
readout ˜̄r in Û becomes identified with the just sampled and
unfiltered r̄ in M̂r̄ ). This expansion produces the Markovian
feedback Itô stochastic master equation

dρ̂ = i
�0

2
[σ̂x, ρ̂] dt + i

�1

4
[σ̂x, {σ̂z, ρ̂}] dt

+ �′

2
D[σ̂z]ρ̂ dt + 1

T1
D[σ̂−]ρ̂ dt + τm �2

1

4
D[σ̂x]ρ̂ dt

+ 1

2
H[σ̂z]ρ̂

dW√
τm

+ i
τm �1

2
[σ̂x, ρ̂]

dW√
τm

. (9)

Here �′ = 1/T2 + 1/2τmη and σ̂− = |0〉〈1|. We also define
the dissipation superoperator D[Â]ρ̂ = Âρ̂Â† − {Â†Â, ρ̂}/2,
as well as the innovation superoperator H[Â]ρ̂ = Âρ̂ +
ρ̂Â† − Tr(Âρ̂ + ρ̂Â†)ρ̂ [3]. Of particular importance is the
commutator of the anticommutator that appears in the first
line, which describes the effect of the feedback control applied
immediately after the collapse induced by the measurement
[3,31,32]. The ensemble-averaged ME is obtained simply by
setting the terms proportional to dW to zero in Eq. (9).

This result simplifies when written in terms of the Bloch
coordinates, yielding

ẋ = −� x − x z
ξ√
τm

, (10a)

ẏ = −
[
� + τm �2

1

2

]
y + �0z + �1

− y z
ξ√
τm

+ τm �1 z
ξ√
τm

, (10b)

ż = −τm �2
1

2
z − �0y − 1 + z

T1

+ (1 − z2)
ξ√
τm

− τm �1 y
ξ√
τm

, (10c)

where � = 1/2T1 + 1/T2 + 1/2τmη is the total ensemble
z-dephasing rate in the absence of feedback. Note that the
feedback contributes additional x dephasing at a rate τm�2

1/2.
The ensemble-averaged ME can be recovered from this

SME by setting the terms proportional to ξ to zero. The
consistency between the deterministic ensemble-average ME
and the discrete formulation of Eq. (5) is then checked by
averaging several thousand trajectories numerically generated
using Eq. (5) and comparing to the analytic solution of the
deterministic part of Eq. (10). We will primarily use the
Bloch coordinate representation in what follows for analytical
calculations.

III. AVERAGE STATE STABILIZATION

We now pose the following state stabilization problem:
Consider a closed, continuous measurement feedback loop
that is to be used as a storage mechanism for preparing a
target qubit state on demand. An experimenter will press a
button at a unknown future time, terminating the feedback
loop, in order to receive the prepared qubit state for immediate
experimentation. Can the feedback parameters �0 and �1 be
fixed such that a particular qubit state is reliably prepared on
average?

We show that in the case of idealized Markovian feedback
an arbitrary pure state may be prepared through feedback
alone. We then generalize the protocol by adding realistic
experimental nonidealities, including energy decay, environ-
mental dephasing, and measurement inefficiency, showing that
the best prepared states have degraded purity compared to
the ideal case but may still be meaningfully stabilized by the
feedback loop. Finally, we discuss the significant effect of
realistic signal filtering and feedback delay on the stabilization
protocol and show that good stabilization is still possible when
the delay is sufficiently short compared to the measurement
collapse timescale.

A. Stationary states for ideal Markovian feedback

For the case of a pure state (T1,T2 → ∞, η = 1) with no
feedback delay (Td → 0), we use the Bloch Eqs. (10) to answer
the question posed above. Specifically, consider the case where
x = 0 initially, so the qubit state lies in the yz plane at (0,ys,zs),
with ys = sin θs and zs = cos θs determined entirely by the
polar angle in the Bloch sphere. We then demand the condition
that this initial state be a fixed point of the ensemble-averaged
dynamics, meaning that ẏ = ż = 0 in Eq. (10) with ξ → 0.
Solving this constraint yields the feedback parameters

�0 = −yszs

2τm

= − sin 2θs

4τm

, �1 = ys

τm

= sin θs

τm

. (11)

That is, for any choice of state angle θs , there exist unique
feedback parameters �0 and �1 that stabilize that state on
average. These parameters are shown as functions of the
stabilized state angle θs in Fig. 1. The dependence of the
linear feedback parameter �1 on sin θs is sensible, since for
θs = {0,π} the natural measurement poles are already fixed
points for collapse. Similarly, it is sensible for the constant
rate �0 to have dependence on sin 2θs , since the constant
rotation biases the fixed point asymmetrically and should
vanish for the backaction-symmetric stabilization points on
the equator with θs = ±π/2.

Numerical simulations are in excellent agreement with
this result for the ideal stationary state, with the feedback
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FIG. 1. Markovian feedback parameters for ensemble-average
stabilization. The constant Rabi drive strength �0 and linear feedback
parameter �1 are shown as functions of the stabilized Bloch sphere
polar angle θ in the yz plane, in units of τ−1

m with τm = 0.2μs. Solid:
Ideal stabilization of a pure state. Dashed: Nonideal stabilization of
the state with maximum Bloch radius Rmax = 1/

√
1/η + 2τm/T2 =

0.64 which includes effects of environmental dephasing (T2 = 40 μs)
and reduced quantum efficiency (η = 0.41).

consistently isolating a unique stabilized state. The only
exception to the uniqueness of the stabilization is that the
active control vanishes at the natural measurement poles, since
�0,�1 → 0 as θs → 0, π . The absence of feedback at the
poles permits stochastic collapse to either σ̂z eigenstate. This
limitation can be readily ameliorated in practice, however, by
stabilizing a state near the pole of choice before removing
feedback and permitting a final collapse step with high
probability to the desired pole, which yields a protocol
analogous to standard state heralding.

B. Stationary states for Markovian feedback

For realistic laboratory situations, we must add the effects
of the energy decay time T1, dephasing time T2, and imperfect
measurement efficiency η. These nonidealities decrease the
state purity, so states in the yz plane will be characterized by
both a polar angle θ and a radius R, related to the purity by
Tr(ρ̂2) = (1 + R2)/2, such that y = R sin θ and z = R cos θ .
Since a pure state is characterized entirely by the polar angle θ ,
we may also consider the radius R to be a measure of the
average state fidelity

F = 〈θs | ρ̂ |θs〉 = 1 + R

2
(12)

between a target pure state and a mixed state at the same
stabilized angle θs . We will see that the stabilized angle θs

may be reliably targeted, which makes R a sensible measure
of stabilization quality (as an aside, it is equivalent to the
synchronization degree D used in Ref. [39]).

As before, we demand that ẏ = ż = 0 in Eq. (10) for
the ensemble average when ξ → 0. This stability condition
produces the following set of stationary states that corre-
spond to each particular choice of feedback parameters �0

and �1

ys = �1
[ τm�2

1
2

] + 1
T1

[�1 − �0]

�2
0 + [

1
T1

+ τm�2
1

2

][
� + τm�2

1
2

] ,

zs = − �0�1 + 1
T1

[
� + τm�2

1
2

]
�2

0 + [
1
T1

+ τm�2
1

2

][
� + τm�2

1
2

] . (13)

However, not every state in the yz plane may be stabilized
due to constraints on the average purity. This fact becomes
more clear when we express the stationary states in polar form
with tan θs = ys/zs and R2

s = y2
s + z2

s ,

tan θs = −
τm�2

1
2�0

+ 1
T1

�1−�0
�0�1

1 + 1
T1�1

[
�
�0

+ τm�2
1

2�0

] T1→∞−−−→ −τm�2
1

2�0
,

Rs =
| sec θs |

∣∣∣�0�1 + �
T1

+ τm�2
1

2T1

∣∣∣
�2

0 + [
1
T1

+ τm�2
1

2

][
� + τm�2

1
2

]
T1→∞−−−→ |�1|

|�0|| sec θs | + �| sin θs | . (14)

The negligible energy-decay limit T1 → ∞ is simpler to
analyze, yet still corresponds to a reasonable approximation
(especially since its dephasing effects at rate (2T1)−1 can be
formally included into the definition of T2). In this limit, we
can readily extremize the value of Rs while keeping θs fixed
in Eqs. (14), which is accomplished by fixing the ratio �2

1/�0

and then varying only �1. This procedure determines the max-
imum radius to be a constant, Rmax = 1/

√
1/η + 2τm/T2 < 1,

that is achieved when �1 = sin θs/(τmRmax). This upper bound
on the radius indicates the maximum achievable purity for the
set of stationary states and thus the maximum achievable pure
state preparation fidelity.

To set the control parameters to target a particular state
(ys,zs), we return to the ẏ = ż = 0 condition for Eqs. (10)
(remembering that we are dealing with the ensemble-average
case where ξ → 0) and solve for �0 and �1 directly to find

�0 = −τm�2
1

2

zs

ys

− 1 + zs

T1 ys

,

�1 = ys

R2
s τm

{
1 ±

√
1 − 2τmR2

s

[
� + (1 + zs)zs

T1 y2
s

] }
. (15)

The �1 solution is not unique, but correctly becomes unique
and reduces to Eqs. (11) in the limits T1,T2 → ∞, and
η,Rs → 1. Moreover, in the T1 → ∞ limit the condition for
the maximum radius Rmax derived above corresponds precisely
to unique solutions of �1 (i.e., when the square root in �1

vanishes). It thus seems reasonable to hypothesize that the
condition for maximum purity corresponds to unique solutions
for �1 more generally, which constrains the radius to

Rmax(θ ) = 1

τm

T1

cos θ
sin2 θ

+
√

2τm

T1
(T1 � + cot2 θ ) + [

τm

T1

cos θ
sin2 θ

]2

T1→∞−−−→ 1√
2τm�

= 1√
1
η

+ 2τm

T2

. (16)
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We will revisit why this is the correct condition later when
we analyze the noise disturbance of individual trajectories in
Sec. IV B. Numerical simulations confirm that Rmax(θ ) is the
correct angle-dependent maximum radius that includes T1. A
plot of Rmax(θ ) is shown in Fig. 5 of Sec. IV C.

The angle-dependent T1 corrections become significant
only when T1 ∼ τm, except around the poles. That is, for
sufficiently strong measurements (shorter τm), the effects of
T1 can be almost safely neglected. However, for an angular
range between δθ = ± arcsin

√
2τm/T1 near the poles, T1 has

a significant effect: It prevents stabilization of the excited-state
pole, while enhancing the stability of the ground-state pole
(see Fig. 5). Outside of this narrow angular range near each
measurement pole, the limit of τm/T1 → 0 should be adequate
to describe most experiments.

For the T1 → ∞ limit, the required control parameters have
a simple closed form in terms of only the angle θ in the
yz plane

�0 = − τm�2
1

2 tan θ
− 1 + Rmax(θ ) cos θ

T1Rmax(θ ) sin θ

T1→∞−−−→ − sin 2θ

4τm

[
1

η
+ 2τm

T2

]
,

�1 = sin θ

Rmax(θ )τm

T1→∞−−−→ sin θ

τm

√
1

η
+ 2τm

T2
, (17)

and generalize Eq. (11) in a straightforward way. This
generalization is one of our main results and is also shown
in Fig. 1 for completeness.

C. Non-Markovian experimental considerations

A fundamental assumption of our analytical treatment to
this point has been the Markovian nature of the feedback
implicit in the Bloch Eqs. (10), which implies an infinitesimal
feedback delay Td → 0 and thus no signal filtering. Although
approximating the system time as continuous with no feedback
delay yields the closed-form solutions in Eqs. (11) and (17) for
the stabilization parameters �0 and �1, the validity of these
prescriptions may not hold for more realistic experimental
situations (e.g., Ref. [62]).

To address this shortcoming and more accurately model
experiment, the effects of signal filtering and feedback delay
within the feedback loop should be included. Signal filtering
necessarily arises physically as a result of the finite bandwidth
of the feedback circuitry. Feedback delay necessarily results
both from the limited signal velocity in the feedback circuitry
and any additional signal processing time within the feedback
loop. Anticipating the need for these effects, we have already
included them in the time-discrete model outlined in Eqs. (5)
and (7).

We model the finite circuitry bandwidth as a single-pole
RC low-pass filter with exponential time constant Ts . That
is, the output filtered signal at time step k is an exponential
moving average ˜̄rk = (dt/Ts)

∑
j�k r̄j exp[−(k − j )dt/Ts] of

the preceding collected raw signals {r̄j }j�k . This moving
average has the convenient recursive form

˜̄rk = ˜̄rk−1 + (1 − e−dt/Ts )(r̄k − ˜̄rk−1). (18)

FIG. 2. Effect of signal filtering and feedback delay on an
ensemble-average stabilized state. Stabilized polar Bloch angle θs

compared to the (representative) target angle θT = 3π/10 (upper) and
Bloch radius Rs compared to the target maximum radius Rmax = 0.64
(lower) as functions of the exponential time constant Ts/τm for a
low-pass filtered signal (left) and signal delay Td/τm (right), both
normalized by the measurement collapse time τm. Though both effects
cause a fixed and correctable angular drift relative to the target value,
the feedback delay dramatically lowers the achievable purity for the
stabilized state.

In the limit Ts → 0 the bandwidth becomes infinite and the
signal fed back into the control loop will be identical to the
measured noisy signal. As the decay constant Ts increases,
the noisy signal will become increasingly smooth and lagged
compared to the raw signal. As such, we expect the quality
of the stabilization to degrade with increasing Ts , since the
control signal will correspond less to the instantaneous qubit
state. We consider the effect of bandwidths ranging from an
ideal decay constant Ts → 0 to the measurement collapse time
scale Ts → τm.

We model the feedback delay Td = nd dt by buffering
nd time steps dt of the filtered signal before feeding that
buffer back into the unitary control in Eqs. (7). As such,
the effective Rabi frequency for the unitary control at time
step tk is �0 + �1 ˜̄rk−nd

. Typical values of Td in current
laboratory setups are ∼200−500 ns [52,62]. As noted earlier,
the lag in the feedback signal due to both signal filtering and
delay makes the dynamics intrinsically non-Markovian, which
largely precludes better analytical estimates of the optimal
stabilization parameters. Nevertheless, we numerically explore
the effects below.

As shown in the left column of Fig. 2, the effect of
signal filtering on the quality of the stabilized state are small.
For a (representative) targeted state with angle θT = 3π/10,
the stabilized angle θs drifts nearly linearly by a small
amount π/10 closer to the nearest measurement pole over
the large filtering range Ts ∈ [0,τm]. The stabilized Bloch
radius Rs is degraded from a target value Rmax = 0.64 by
an amount 0.1 over the same range of Ts . Notably, the
radius remains essentially unaffected for Ts � 0.2τm. Since
the radius is closely related to the state purity, this robustness
to small amounts of signal filtering indicates that quality state
stabilization may still be achieved after a suitable recalibration
of the targeted stabilization angle. Such correction of the
angular drift will also compensate for most of the degradation
in R observed here.
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As shown in the right column of Fig. 2, the effect of feed-
back delay on the stabilization quality is dramatic compared
to the effect of signal filtering. While the (representative)
target angle θT = 3π/10 drifts by approximately the same
small amount π/10 toward the nearest measurement pole over
the delay range Td ∈ [0,τm], the Bloch radius R becomes
substantially more degraded from Rmax = 0.64 to a mere
Rs = 0.15 over the same range. Such dramatic degradation
of R may not be mitigated by correction of the angular drift.
Moreover, the Bloch radius sharply decreases linearly for
even small amounts of delay, indicating that the stabilization
protocol is quite sensitive to feedback delay. To be useful,
this implies that the feedback delay must be a small fraction of
the measurement collapse time Td/τm � 0.2. For typical delay
times of Td ∼ 200 ns, this mandates very slow measurements
with τm � 1 μs. We note that the sensitivity to delay seen
here is in good qualitative agreement with a similar analysis
of stabilized Rabi oscillations for a double-quantum-dot
performed in Ref. [38].

The notable exceptions to the behavior described above
are the specific target angles θT = ±π/2 on the equator of
the Bloch sphere. For these angles, stabilization is excellent
when Td = Ts = 0, even in the nonideal case, but rapidly
becomes impossible for even small amounts of smoothing
and delay. Curiously, the regions around the equator are still
well stabilized in accordance with the preceding paragraphs,
but there is a sharp instability precisely at the equator.
Such an instability at the equator is reminiscent of that
seen in fluorescence-based qubit state stabilization protocols
[35,36,41,62]; however, it is notable that our protocol does not
display such an instability until signal filtering or feedback
delay are added.

IV. TRAJECTORY STABILIZATION

In the preceding section, we posed a stabilization problem
for which the ensemble-average state is the only accessible
quantity to the experimenter. That is, the experimenter has
no knowledge of any detailed prior evolution of the state
during the stabilization process and only receives a fluctuating
output state. We now consider a slightly modified posing of
the problem that permits deeper investigation into the nature
of the stabilization process itself.

Consider again a closed, continuous measurement feedback
loop used as a storage mechanism for preparing a target qubit
state on demand. However, now let the feedback loop also
internally track the evolution of the qubit using the measured
continuous readout. An experimenter will press a button as
before, at which point the feedback loop will be terminated
and the prepared qubit given to the experimenter. However, the
state preparation procedure will now also report its estimate of
the actual qubit state to the experimenter. The experimenter
may then choose to discard the qubit and wait for a new
preparation, or choose to perform an experiment immediately
with the prepared state. Can the feedback parameters �0 and
�1 be fixed such that a particular qubit state is reliably prepared
with high probability for each single shot of the experiment?

Note that this trajectory-specific stabilization problem can
dramatically differ from the ensemble-averaged version in the
previous section, since the peak of the distribution of prepared

states need not correspond to the mean of that distribution.
The peak of the trajectory distribution corresponds to the
most likely state to be prepared, which we can take to be the
most relevant quantity. That is, the experimenter can readily
discard the states far away from the peak while still keeping
a substantial fraction of the prepared states. Thus, we seek to
characterize the dominant distribution peak and the spread of
the distribution around that peak.

We show that for idealized Markovian feedback, perfect
stabilization of individual qubit trajectories is possible in the
time-continuous limit, with an identical solution for the feed-
back parameters as obtained for the ensemble-averaged case.
We then generalize the protocol to add realistic experimental
nonidealities and show that the stabilization condition may
no longer be completely satisfied for individual trajectories.
Nevertheless, the optimal stabilization for individual trajecto-
ries still coincides with the stabilization of ensemble-averaged
states possessing maximum purity, yielding again the same
solution for the feedback parameters discussed in the previous
section. The lack of perfect stabilization has a substantial
impact on the structure of the state trajectory distribution,
however, causing broadening relative to the ideal case, as well
as a shift of the most probable peak away from the ensemble
average. Finally, we discuss the effect of realistic feedback
delay and signal filtering on the stabilization protocol and show
that it rapidly broadens the distributional width even further
unless the delay time is short compared to the measurement
collapse time scale.

A. Stationary states for ideal Markovian feedback

To stabilize an individual trajectory to a particular stationary
point, the effect of the fluctuating noise must vanish at that
point. As such, we can re-examine the Bloch Eqs. (10) in the
presence of an arbitrary noise realization ξ (assuming ideal
limits T1, T2 → ∞ and η,Rs → 1 as in Sec. III A) and demand
that ẏ = ż = 0 as before. Forcing the noise term to vanish for
all noise realizations ξ produces the additional constraints

−yszs + τm�1zs = 0, y2
s − τm�1ys = 0. (19)

Both these constraints are automatically satisfied by the feed-
back parameter �1 = ys/τm already derived for the ensemble-
averaged case in Eq. (11). That is, at the stationary state of the
ensemble average, the backaction from the noise vanishes for
each individual trajectory, so each trajectory should also be
independently stabilized. This result is expected because the
ensemble average solution was a pure state, indicating a cer-
tainty only obtainable if noise fluctuations identically vanish.

For time-discrete simulations, however, this ideal stability
point is imperfect. The finite-state jumps due to the finite time
steps cause minor fluctuations around the stability point in
practice, which vanish in the limit dt → 0. Interestingly, near
the equator with z = 0, the width of the fluctuation distribution
around the stability point with larger dt narrows considerably.
This improved stability at the equator is akin to balancing
a rod nearly vertically by shifting its balance point laterally,
which can be accomplished most efficiently when the rod is
at the unstable equilibrium point at the vertical. Conversely,
near the poles with z = ±1 the distribution broadens due to
the destabilizing influence of the nearby pole. This converse
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FIG. 3. Ideal Markovian feedback stabilization for qubit Bloch coordinates (y,z) = (sin θ, cos θ ), shown (left, right), with collapse time
τm = 0.2 μs and time step dt = 0.5 ns. By setting the feedback parameters �0 = − sin(2θs)/4τm and �1 = sin θs/τm, the initial state at
θ = π/10, (y,z) = (0.3,0.91), correctly evolves to the target stationary state with angle θs = 3π/10, (ys,zs) = (0.81,0.59), within a few
measurement collapse times τm. Analytic solutions for the ensemble-average state evolution (blue, nearly coinciding with red) are compared to
the numerically simulated ensemble average over 104 trajectories (red). Individual sample trajectories (gray) roughly indicate the distributional
convergence to the targeted state.

situation is akin to balancing a rod at an extreme angle
with lateral motion, which is prone to larger error since the
feedback competes with the nearby stable equilibrium point.
This intuition about balancing a rod also helps to explain the
disastrous effect of the signal filtering and feedback delay
seen at the Bloch sphere equator in Sec. III C: If control is
applied too late or in the incorrect direction for a vertically
balanced rod, it will fall before the control can effectively
recover. However, the stabilization of angles slightly away
from the unstable equilibrium is more tolerant to delay, as the
required feedback signal is already more significant.

Example trajectories are shown in Fig. 3, showing the
stabilization from an initial state at angle θ = π/10 to a target
state at angle θs = 3π/10. Not only does the ensemble-average
of 104 trajectories (red) correspond to the analytical solution
(blue) of the ensemble-average Markovian feedback Eq. (7),
but most individual trajectories (gray) correctly converge to the

same ensemble-average stability point within a few collapse
times τm = 0.2 μs. For simulation purposes, dt = 0.5 ns;
note that further decreasing the time step size dt will only
improve the convergence to the stability point, as the analytic
results were derived strictly for the dt → 0 limit.

Notably, the state trajectory stability shown here behaves
differently from previously considered fluorescence feedback
protocols [35,41,62], which were unable to stabilize the Bloch
equator (even without signal filtering or feedback delay). The
reason for the difference in the dispersive measurement case
is that the measurement backaction symmetrically attracts
the state toward both poles, so can balance the equator
akin to the vertical balancing of a rod at an unstable
equilibrium. In contrast, the fluorescence measurements con-
sidered in Refs. [35,36,41,62] have fundamentally asym-
metric backaction, which resulted in the equator becoming
unstable.

FIG. 4. Nonideal Markovian feedback stabilization for qubit Bloch coordinates (y,z) = (R sin θ,R cos θ ), shown (left, right), with collapse
time τm = 0.2 μs, time step dt = 0.5 ns, energy decay time T1 = 60 μs, environmental dephasing time T2 = 40 μs, and quantum efficiency
η = 0.41. By setting the feedback parameters �0 = −[sin(2θs)/4τmR2

s ] and �1 = (sin θs/τmRs), with Rs(θs) determined by Eq. (16) in the
text, the initial state at angle θ = π/10 and unit radius, or (y,z) = (0.3,0.91), correctly evolves to the target stationary state with angle
θs = 3π/10 and radius Rs = 0.64, or (ys,zs) = (Rs sin θs,Rs cos θs) = (0.52,0.37) on average, within a few measurement collapse times τm.
Analytic solutions for the ensemble-average state evolution (blue, nearly coinciding with red) are compared to the numerically simulated
ensemble-average over 104 trajectories (red). Individual sample trajectories (gray) show broad fluctuation around the target state compared
with the ideal case in Fig. 3.
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B. Minimum disturbance Markovian feedback

When nonidealities are added as in Sec. III B, it is no longer
possible to perfectly remove the backaction from the noise,
even in the continuous Markovian limit dt → 0. From Eq. (10)
we can isolate the disturbance caused to the y and z coordinates
per unit noise ξ/

√
τm,

δy ≡ −yszs + τm�1zs, δz ≡ (
1 − z2

s

) − τm�1ys. (20)

These noise disturbances should be minimized at a stationary
point (ys,zs), and depend only on the feedback parameter
�1. However, they do not both vanish simultaneously for any
choice of �1 if the stabilized state is not pure. That is,

�1
δy=0−−→ ys

τm

= Rs sin θs

τm

,

�1
δz=0−−→ 1 − z2

s

τmys

= 1 − R2
s

τmRs sin θs

+ Rs sin θs

τm

. (21)

This discrepancy implies that a minimum fluctuation must
persist for any choice of �1.

A natural resolution to this dilemma is to minimize the total
noise disturbance. That is, after defining the noise disturbance
for the entire Bloch vector δ�s = (0,δy,δz), a natural cost
function is the length of this vector C(�1) = |δ�s|2 = (δy)2 +
(δz)2. Minimizing this cost via C ′(�1) = 0 yields an optimal
feedback parameter that is distinct from both single-coordinate

FIG. 5. Comparison between targeted ensemble-average states
(black curve) and most probable individual trajectories (orange dots),
for parameters T1 = 60 μs, T2 = 40 μs, η = 0.41, τm = 0.2 μs, and
dt = 10 ns. Each orange dot is the maximum histogram bin for an
ensemble of 105 trajectories, targeting a range of polar angles θ ∈
(0,π ). The computed data has been reflected over the y = 0 axis
for visual appeal. The ensemble-averaged state (black) has constant
radius of RE = 0.64 except near the poles where T1 effects manifest.
Note that the stabilization of the excited-state pole is compromised,
while stabilization of the ground-state pole is enhanced. The most
probable states (orange) coincide with the mean only at the equator
when z = 0 and otherwise purify near the poles, as also shown in
Fig. 6.

optima in Eq. (21),

�1
C ′=0−−→ ys

R2
s τm

= sin θs

Rsτm

. (22)

Notably, this minimum noise-disturbance �1 precisely corre-
sponds to the form found for the ensemble-average stability
condition in Eq. (15) when the average radius Rs is made max-
imal via the constraint in Eq. (16). We can thus understand the
mysterious condition in Eq. (16) as physically corresponding
to the requirement that the noise disturbance be minimal for
individual trajectories.

We thus completely recover the optimal results outlined
for the ensemble average case in Eqs. (15) and (16), with
limit as T1 → ∞ given explicitly in Eq. (17). This result is
sensible, since the ensemble average should be most pure
when each individual trajectory is optimally stabilized at
its maximum achievable purity. Pragmatically, this means
that there is no difference in procedure between trying to
stabilize an ensemble-averaged state with maximal purity and
trying to stabilize individual trajectories to have minimum
measurement disturbance in the case of Markovian feedback.
The two variations of our stabilization problem produce
identical parameter prescriptions for �0 and �1.

Example trajectories are shown in Fig. 4, showing the same
stabilization task from an initial state at angle θ = π/10 to a
target state at angle θs = 3π/10 as in Fig. 3 for comparison.
Due to the nonidealities of efficiency η = 0.41, energy decay
time T1 = 60 μs, and environmental dephasing time T2 =
40 μs, the target maximum ensemble-averaged radius Rs =
0.64 follows from Eq. (16), using the same collapse time
τm = 0.2 μs, and time step dt = 0.5 ns. As with the ideal case,
the ensemble average of 104 trajectories (red) corresponds
well to the analytic solution (blue) of the ensemble-average
Markovian feedback Eq. (7). However, the distribution of
individual trajectories (gray) is now much broader around the
ensemble-average stability point. Despite the chosen feedback
parameters minimizing the total noise disturbance, there is still
significant fluctuation within the stabilized region.

A steady-state trajectory histogram on the Bloch plane
typically shows a single dominant lobe centered near the
target stability point. Notably, however, for stabilization points
near the poles at z = ±1, the distribution of trajectories may
bifurcate into two distinct lobes such that the ensemble-average
point corresponds to the peak of neither lobe. Example
histograms of cases at θs = 3π/10 and θs = π/10 are shown in
Fig. 6 to emphasize this splitting of stabilization lobes that can
occur near a pole. For the posing of the stabilization problem
in this section, an experimenter will obtain likely states at the
peaks of each lobe with high probability and will recover the
ensemble average from the posing in the last section only after
averaging many of these high-probability preparations.

Both the primary and secondary stability lobes for targeted
angles near a pole tend to be more pure than stabilized states
near the equator. However, averaging the lobes together pre-
serves the same, nearly angle-independent, ensemble-average
Bloch radius. As such, it is significantly more challenging to
relate the peak of the dominant stabilized lobe (i.e., the most
likely prepared state) to the two control parameters �0 and
�1 analytically. Nevertheless, the positions of the peaks for
the dominant lobes may be readily mapped out numerically by
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FIG. 6. Nonideal trajectory histograms at steady state in the Bloch
yz plane. The inefficiencies T1 = 60 μs, T2 = 40 μs, η = 0.41 are
included as in Fig. 4, with τm = 0.2 μs and dt = 10 ns. Signal filtering
and feedback delay are neglected here (Ts = Td = 0). (Top) Target
ensemble-average state θs = 3π/10 and Rs = 0.64, showing single-
lobe stabilization. The actual histogram peak (black bar) is at the
same target angle θP = 3π/10 but with larger radius RP = 0.78 than
the mean, with deviation σ = 0.23 around that peak. (Bottom) Target
ensemble-average state θs = π/10 and Rs = 0.64 closer to the pole,
showing double-lobe stabilization. The dominant peak (black bar) is
at the shifted angle θP = 11π/100 with substantially larger radius
RP = 0.96 and deviation σ = 0.54.

varying the ostensible target angles θs according to Eqs. (22)
and (17) and computing the obtained θP and RP for the
dominant histogram peak corresponding to those parameters.
We plot the result of this numerical procedure in Fig. 5,
showing the purification of the most likely states near the
measurement poles.

C. Non-Markovian experimental considerations

As with the ensemble average posing in Sec. III C, adding
single-pole low-pass signal filtering and feedback delay
dramatically alters the quality of the stabilization protocol. The
effect can be seen most readily in the trajectory histograms, of
which we show an example in Fig. 7 that can be directly
compared with the top plot in Fig. 6. The single-lobe

FIG. 7. Nonideal trajectory histograms at steady state in the Bloch
yz plane, including signal filtering and delay. The ensemble-average
state θs = 3π/10 and Rs = 0.64 is targeted using the same parameters
as the top plot in Fig. 6 for comparison. (Top) Only single-pole
low-pass signal filtering is added with exponential time constant Ts =
0.2τm. The single lobe of Fig. 6 spreads into a larger region, degrading
the ensemble-average purity. Most prepared states retain high purity,
however, including the most probable state (black bar) with θP =
0.23π and RP = 0.85. (Bottom) Only feedback delay of Td = 0.2τm

is added. Similar to signal filtering, the single lobe spreads, but into
an even larger region, as indicated in Fig. 2. The most probable state
(black bar) is also similar, with θP = 0.2π and RP = 0.83.

stabilization region spreads out due to both signal filtering
and feedback delay into a larger region, consistent with the
expectations from Fig. 2. As such, while most prepared states
will actually have relatively high purity, the ensemble-average
state becomes increasingly mixed. Moreover, the angular
stabilization is compromised as the angular uncertainty in the
broadened region becomes large. While the most probable state
remains near the targeted angle, with high purity, it becomes
comparable in probability to most other prepared states and
thus dubiously stabilized.

In order to achieve the best quality stabilization, an
experimenter should thus minimize the feedback delay Td

relative to the measurement collapse time τm. As estimated in
Sec. III C, for realistic delays of Td ∼200 ns, one should use
slow measurements with τm � 1 μs. Compared to this time
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scale, typical signal filtering time scales Ts should also be
relatively inconsequential.

V. CONCLUSIONS

We investigated the linear feedback stabilization of a
transmon qubit being continuously monitored by dispersive
coupling to a microwave field. Using only a time-varying
Rabi drive consisting of a constant frequency modulated by a
direct linear feedback of the collected and filtered microwave
signal, we showed that it is possible to prepare target qubit
states on demand for any angle in the Bloch sphere. We
detailed both a time-discrete and a time-continuous model
for the measurement process, derived analytical solutions for
the stabilization conditions, and checked the results through
numerical simulations. Notably, we showed that the required
feedback parameters are identical for two distinct variations of
the stabilization problem: (1) on-demand preparation of a sta-
bilized ensemble-average state and (2) on-demand preparation
of a single-state trajectory with minimized total measurement
disturbance. In the first situation, an experimenter does not
have any information about the exact preparation shot to shot
and so can only access the ensemble-averaged state. In the
second, the experimenter also has information about the exact
state that was prepared. Interestingly, in the latter, the most
likely states that are prepared tend to have higher purity, yet
still recover the same ensemble-average state as the former.

In the ideal case, we showed that any target pure qubit state
may be stabilized and derived the two unique feedback param-
eters in Eq. (11) that achieve that stabilization. In the nonideal
case, with experimental nonidealities of energy relaxation,
environmental dephasing, and measurement inefficiency, we
showed how to target ensemble-average states with maximum
purity by setting the feedback parameters in Eqs. (22) and
(15), which have the approximate closed form in Eq. (17)
when energy relaxation can be neglected. Expressed in Bloch
coordinates, most qubit state angles may still be stabilized in
the nonideal case, with a nearly angle-independent maximum
radius given by Eq. (16). Finally, we included the experimental
nonidealities of single-pole, low-pass signal filtering and
feedback delay, and investigated their effect numerically.
These additional effects physically arise from the feedback
circuitry, and degrade the quality of the achievable state
stabilization by widening the distribution of prepared state
trajectories and thus shrinking the ensemble-averaged state
purity. Notably, feedback delay that is appreciable compared
to the collapse time scale has the most damaging effect on the
stabilization protocol.

This stabilization protocol is within reach of modern
superconducting transmon experiments involving continuous
microwave measurements. The analysis presented here should
be suitable for accurately modeling a feedback loop imple-

mented with a simple controller programmed into a field-
programmable gate array (FPGA) as used in Refs. [11,54,62]
or even a feedback loop consisting of a simple analog circuit as
used in Refs. [52,60]. Such a feedback stabilization experiment
would prompt further investigation into the use of continuous
measurement feedback for practical quantum information
tasks in future work.
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APPENDIX

In this Appendix, we briefly include a pure state formulation
of the continuous time limit for completeness. This formula-
tion simply reproduces the conclusions already obtained from
the Bloch equations in the main text. In the ideal case without
experimental nonidealities, Eqs. (3) and (4) are sufficient to
describe the pure state vector update equation

|ψ(t + dt)〉 = ÛM̂r̄ |ψ(t)〉√
〈ψ(t)| M̂†

r̄ M̂r̄ |ψ(t)〉
. (A1)

Performing an expansion to linear order in dt of the pure state
update Eq. (A1) while applying the Itô rule dW 2 = dt then
produces the Itô stochastic Schrödinger equation

d |ψ〉 =
[
i
�0

2
σ̂x + i

�1

4
σ̂x(σ̂z + z) + z

4τm

σ̂z

− 1 + z2 + τ 2
m �2

1

8τm

]
dt |ψ〉 ,

+
[
i
τm �1

2
σ̂x + 1

2
(σ̂z − z)

]
dW√

τm

|ψ〉 . (A2)

Though this state vector representation has lower dimension-
ality than the density operator SME in Eq. (9), it reproduces
the same Bloch coordinate equations in Eq. (10), albeit with
the added constraint x2 + y2 + z2 = 1.
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