1,847 research outputs found

    Detection of subthreshold pulses in neurons with channel noise

    Full text link
    Neurons are subject to various kinds of noise. In addition to synaptic noise, the stochastic opening and closing of ion channels represents an intrinsic source of noise that affects the signal processing properties of the neuron. In this paper, we studied the response of a stochastic Hodgkin-Huxley neuron to transient input subthreshold pulses. It was found that the average response time decreases but variance increases as the amplitude of channel noise increases. In the case of single pulse detection, we show that channel noise enables one neuron to detect the subthreshold signals and an optimal membrane area (or channel noise intensity) exists for a single neuron to achieve optimal performance. However, the detection ability of a single neuron is limited by large errors. Here, we test a simple neuronal network that can enhance the pulse detecting abilities of neurons and find dozens of neurons can perfectly detect subthreshold pulses. The phenomenon of intrinsic stochastic resonance is also found both at the level of single neurons and at the level of networks. At the network level, the detection ability of networks can be optimized for the number of neurons comprising the network.Comment: 14 pages, 9 figure

    A neural mechanism for binaural pitch perception via ghost stochastic resonance

    Full text link
    We present a physiologically plausible binaural mechanism for the perception of the pitch of complex sounds via ghost stochastic resonance. In this scheme, two neurons are driven by noise and different periodic signal each (with frequencies f1=kf0 and f2=(k+1)f0, where k>1), and their outputs (plus noise) are applied synaptically to a third neuron. Our numerical results, using the Morris-Lecar neuron model with chemical synapses explicity considered, show that intermediate noise levels enhance the response of the third neuron at frequencies close to f0, as in the cases previously described of ghost resonance. For the case of inharmonic combinations of inputs (both frequencies shifted by the same amount Df) noise is also seen to enhance the response of the third neuron at a frequency fr with also shift linearly with Df. In addition, we show that similar resonances can be observed as a function of the synaptic time constant. The suggested ghost-resonance-based stochastic mechanism can thus arise either at the peripheral level or at a higher level of neural processing in the perception of the pitchComment: 7 pages, 5 figure

    Phasic firing and coincidence detection by subthreshold negative feedback: divisive or subtractive or, better, both

    Get PDF
    Phasic neurons typically fire only for a fast-rising input, say at the onset of a step current, but not for steady or slow inputs, a property associated with type III excitability. Phasic neurons can show extraordinary temporal precision for phase locking and coincidence detection. Exemplars are found in the auditory brain stem where precise timing is used in sound localization. Phasicness at the cellular level arises from a dynamic, voltage-gated, negative feedback that can be recruited subthreshold, preventing the neuron from reaching spike threshold if the voltage does not rise fast enough. We consider two mechanisms for phasicness: a low threshold potassium current (subtractive mechanism) and a sodium current with subthreshold inactivation (divisive mechanism). We develop and analyze three reduced models with either divisive or subtractive mechanisms or both to gain insight into the dynamical mechanisms for the potentially high temporal precision of type III-excitable neurons. We compare their firing properties and performance for a range of stimuli. The models have characteristic non-monotonic input-output relations, firing rate vs. input intensity, for either stochastic current injection or Poisson-timed excitatory synaptic conductance trains. We assess performance according to precision of phase-locking and coincidence detection by the models' responses to repetitive packets of unitary excitatory synaptic inputs with more or less temporal coherence. We find that each mechanism contributes features but best performance is attained if both are present. The subtractive mechanism confers extraordinary precision for phase locking and coincidence detection but only within a restricted parameter range when the divisive mechanism of sodium inactivation is inoperative. The divisive mechanism guarantees robustness of phasic properties, without compromising excitability, although with somewhat less precision. Finally, we demonstrate that brief transient inhibition if properly timed can enhance the reliability of firing.Postprint (published version

    Stochastic Resonance in Neuron Models: Endogenous Stimulation Revisited

    Full text link
    The paradigm of stochastic resonance (SR)---the idea that signal detection and transmission may benefit from noise---has met with great interest in both physics and the neurosciences. We investigate here the consequences of reducing the dynamics of a periodically driven neuron to a renewal process (stimulation with reset or endogenous stimulation). This greatly simplifies the mathematical analysis, but we show that stochastic resonance as reported earlier occurs in this model only as a consequence of the reduced dynamics.Comment: Some typos fixed, esp. Eq. 15. Results and conclusions are not affecte

    Emergence of Resonances in Neural Systems: The Interplay between Adaptive Threshold and Short-Term Synaptic Plasticity

    Get PDF
    In this work we study the detection of weak stimuli by spiking (integrate-and-fire) neurons in the presence of certain level of noisy background neural activity. Our study has focused in the realistic assumption that the synapses in the network present activity-dependent processes, such as short-term synaptic depression and facilitation. Employing mean-field techniques as well as numerical simulations, we found that there are two possible noise levels which optimize signal transmission. This new finding is in contrast with the classical theory of stochastic resonance which is able to predict only one optimal level of noise. We found that the complex interplay between adaptive neuron threshold and activity-dependent synaptic mechanisms is responsible for this new phenomenology. Our main results are confirmed by employing a more realistic FitzHugh-Nagumo neuron model, which displays threshold variability, as well as by considering more realistic stochastic synaptic models and realistic signals such as poissonian spike trains
    • …
    corecore