193 research outputs found

    Learning to Race through Coordinate Descent Bayesian Optimisation

    Full text link
    In the automation of many kinds of processes, the observable outcome can often be described as the combined effect of an entire sequence of actions, or controls, applied throughout its execution. In these cases, strategies to optimise control policies for individual stages of the process might not be applicable, and instead the whole policy might have to be optimised at once. On the other hand, the cost to evaluate the policy's performance might also be high, being desirable that a solution can be found with as few interactions as possible with the real system. We consider the problem of optimising control policies to allow a robot to complete a given race track within a minimum amount of time. We assume that the robot has no prior information about the track or its own dynamical model, just an initial valid driving example. Localisation is only applied to monitor the robot and to provide an indication of its position along the track's centre axis. We propose a method for finding a policy that minimises the time per lap while keeping the vehicle on the track using a Bayesian optimisation (BO) approach over a reproducing kernel Hilbert space. We apply an algorithm to search more efficiently over high-dimensional policy-parameter spaces with BO, by iterating over each dimension individually, in a sequential coordinate descent-like scheme. Experiments demonstrate the performance of the algorithm against other methods in a simulated car racing environment.Comment: Accepted as conference paper for the 2018 IEEE International Conference on Robotics and Automation (ICRA

    Adaptive trajectory-constrained exploration strategy for deep reinforcement learning

    Full text link
    Deep reinforcement learning (DRL) faces significant challenges in addressing the hard-exploration problems in tasks with sparse or deceptive rewards and large state spaces. These challenges severely limit the practical application of DRL. Most previous exploration methods relied on complex architectures to estimate state novelty or introduced sensitive hyperparameters, resulting in instability. To mitigate these issues, we propose an efficient adaptive trajectory-constrained exploration strategy for DRL. The proposed method guides the policy of the agent away from suboptimal solutions by leveraging incomplete offline demonstrations as references. This approach gradually expands the exploration scope of the agent and strives for optimality in a constrained optimization manner. Additionally, we introduce a novel policy-gradient-based optimization algorithm that utilizes adaptively clipped trajectory-distance rewards for both single- and multi-agent reinforcement learning. We provide a theoretical analysis of our method, including a deduction of the worst-case approximation error bounds, highlighting the validity of our approach for enhancing exploration. To evaluate the effectiveness of the proposed method, we conducted experiments on two large 2D grid world mazes and several MuJoCo tasks. The extensive experimental results demonstrate the significant advantages of our method in achieving temporally extended exploration and avoiding myopic and suboptimal behaviors in both single- and multi-agent settings. Notably, the specific metrics and quantifiable results further support these findings. The code used in the study is available at \url{https://github.com/buaawgj/TACE}.Comment: 35 pages, 36 figures; accepted by Knowledge-Based Systems, not publishe

    Stochastic Optimization For Multi-Agent Statistical Learning And Control

    Get PDF
    The goal of this thesis is to develop a mathematical framework for optimal, accurate, and affordable complexity statistical learning among networks of autonomous agents. We begin by noting the connection between statistical inference and stochastic programming, and consider extensions of this setup to settings in which a network of agents each observes a local data stream and would like to make decisions that are good with respect to information aggregated across the entire network. There is an open-ended degree of freedom in this problem formulation, however: the selection of the estimator function class which defines the feasible set of the stochastic program. Our central contribution is the design of stochastic optimization tools in reproducing kernel Hilbert spaces that yield optimal, accurate, and affordable complexity statistical learning for a multi-agent network. To obtain this result, we first explore the relative merits and drawbacks of different function class selections. In Part I, we consider multi-agent expected risk minimization this problem setting for the case that each agent seems to learn a common globally optimal generalized linear models (GLMs) by developing a stochastic variant of Arrow-Hurwicz primal-dual method. We establish convergence to the primal-dual optimal pair when either consensus or ``proximity constraints encode the fact that we want all agents\u27 to agree, or nearby agents to make decisions that are close to one another. Empirically, we observe that these convergence results are substantiated but that convergence may not translate into statistical accuracy. More broadly, optimality within a given estimator function class is not the same as one that makes minimal inference errors. The optimality-accuracy tradeoff of GLMs motivates subsequent efforts to learn more sophisticated estimators based upon learned feature encodings of the data that is fed into the statistical model. The specific tool we turn to in Part II is dictionary learning, where we optimize both over regression weights and an encoding of the data, which yields a non-convex problem. We investigate the use of stochastic methods for online task-driven dictionary learning, and obtain promising performance for the task of a ground robot learning to anticipate control uncertainty based on its past experience. Heartened by this implementation, we then consider extensions of this framework for a multi-agent network to each learn globally optimal task-driven dictionaries based on stochastic primal-dual methods. However, it is here the non-convexity of the optimization problem causes problems: stringent conditions on stochastic errors and the duality gap limit the applicability of the convergence guarantees, and impractically small learning rates are required for convergence in practice. Thus, we seek to learn nonlinear statistical models while preserving convexity, which is possible through kernel methods ( Part III). However, the increased descriptive power of nonparametric estimation comes at the cost of infinite complexity. Thus, we develop a stochastic approximation algorithm in reproducing kernel Hilbert spaces (RKHS) that ameliorates this complexity issue while preserving optimality: we combine the functional generalization of stochastic gradient method (FSGD) with greedily constructed low-dimensional subspace projections based on matching pursuit. We establish that the proposed method yields a controllable trade-off between optimality and memory, and yields highly accurate parsimonious statistical models in practice. % Then, we develop a multi-agent extension of this method by proposing a new node-separable penalty function and applying FSGD together with low-dimensional subspace projections. This extension allows a network of autonomous agents to learn a memory-efficient approximation to the globally optimal regression function based only on their local data stream and message passing with neighbors. In practice, we observe agents are able to stably learn highly accurate and memory-efficient nonlinear statistical models from streaming data. From here, we shift focus to a more challenging class of problems, motivated by the fact that true learning is not just revising predictions based upon data but augmenting behavior over time based on temporal incentives. This goal may be described by Markov Decision Processes (MDPs): at each point, an agent is in some state of the world, takes an action and then receives a reward while randomly transitioning to a new state. The goal of the agent is to select the action sequence to maximize its long-term sum of rewards, but determining how to select this action sequence when both the state and action spaces are infinite has eluded researchers for decades. As a precursor to this feat, we consider the problem of policy evaluation in infinite MDPs, in which we seek to determine the long-term sum of rewards when starting in a given state when actions are chosen according to a fixed distribution called a policy. We reformulate this problem as a RKHS-valued compositional stochastic program and we develop a functional extension of stochastic quasi-gradient algorithm operating in tandem with the greedy subspace projections mentioned above. We prove convergence with probability 1 to the Bellman fixed point restricted to this function class, and we observe a state of the art trade off in memory versus Bellman error for the proposed method on the Mountain Car driving task, which bodes well for incorporating policy evaluation into more sophisticated, provably stable reinforcement learning techniques, and in time, developing optimal collaborative multi-agent learning-based control systems

    A Covariance Matrix Adaptation Evolution Strategy for Direct Policy Search in Reproducing Kernel Hilbert Space

    Get PDF
    The covariance matrix adaptation evolution strategy (CMA-ES) is an efficient derivative-free optimization algorithm. It optimizes a black-box objective function over a well defined parameter space. In some problems, such parameter spaces are defined using function approximation in which feature functions are manually defined. Therefore, the performance of those techniques strongly depends on the quality of chosen features. Hence, enabling CMA-ES to optimize on a more complex and general function class of the objective has long been desired. Specifically, we consider modeling the input space for black-box optimization in reproducing kernel Hilbert spaces (RKHS). This modeling leads to a functional optimization problem whose domain is a function space that enables us to optimize in a very rich function class. In addition, we propose CMA-ES-RKHS, a generalized CMA-ES framework, that performs black-box functional optimization in the RKHS. A search distribution, represented as a Gaussian process, is adapted by updating both its mean function and covariance operator. Adaptive representation of the function and covariance operator is achieved with sparsification techniques. We evaluate CMA-ES-RKHS on a simple functional optimization problem and bench-mark reinforcement learning (RL) domains. For an application in RL, we model policies for MDPs in RKHS and transform a cumulative return objective as a functional of RKHS policies, which can be optimized via CMA-ES-RKHS. This formulation results in a black-box functional policy search framework
    • …
    corecore