224 research outputs found

    SSRGD: Simple Stochastic Recursive Gradient Descent for Escaping Saddle Points

    Full text link
    We analyze stochastic gradient algorithms for optimizing nonconvex problems. In particular, our goal is to find local minima (second-order stationary points) instead of just finding first-order stationary points which may be some bad unstable saddle points. We show that a simple perturbed version of stochastic recursive gradient descent algorithm (called SSRGD) can find an (ϵ,δ)(\epsilon,\delta)-second-order stationary point with O~(n/ϵ2+n/δ4+n/δ3)\widetilde{O}(\sqrt{n}/\epsilon^2 + \sqrt{n}/\delta^4 + n/\delta^3) stochastic gradient complexity for nonconvex finite-sum problems. As a by-product, SSRGD finds an ϵ\epsilon-first-order stationary point with O(n+n/ϵ2)O(n+\sqrt{n}/\epsilon^2) stochastic gradients. These results are almost optimal since Fang et al. [2018] provided a lower bound Ω(n/ϵ2)\Omega(\sqrt{n}/\epsilon^2) for finding even just an ϵ\epsilon-first-order stationary point. We emphasize that SSRGD algorithm for finding second-order stationary points is as simple as for finding first-order stationary points just by adding a uniform perturbation sometimes, while all other algorithms for finding second-order stationary points with similar gradient complexity need to combine with a negative-curvature search subroutine (e.g., Neon2 [Allen-Zhu and Li, 2018]). Moreover, the simple SSRGD algorithm gets a simpler analysis. Besides, we also extend our results from nonconvex finite-sum problems to nonconvex online (expectation) problems, and prove the corresponding convergence results.Comment: 44 page

    Asynchronous Optimization Methods for Efficient Training of Deep Neural Networks with Guarantees

    Full text link
    Asynchronous distributed algorithms are a popular way to reduce synchronization costs in large-scale optimization, and in particular for neural network training. However, for nonsmooth and nonconvex objectives, few convergence guarantees exist beyond cases where closed-form proximal operator solutions are available. As most popular contemporary deep neural networks lead to nonsmooth and nonconvex objectives, there is now a pressing need for such convergence guarantees. In this paper, we analyze for the first time the convergence of stochastic asynchronous optimization for this general class of objectives. In particular, we focus on stochastic subgradient methods allowing for block variable partitioning, where the shared-memory-based model is asynchronously updated by concurrent processes. To this end, we first introduce a probabilistic model which captures key features of real asynchronous scheduling between concurrent processes; under this model, we establish convergence with probability one to an invariant set for stochastic subgradient methods with momentum. From the practical perspective, one issue with the family of methods we consider is that it is not efficiently supported by machine learning frameworks, as they mostly focus on distributed data-parallel strategies. To address this, we propose a new implementation strategy for shared-memory based training of deep neural networks, whereby concurrent parameter servers are utilized to train a partitioned but shared model in single- and multi-GPU settings. Based on this implementation, we achieve on average 1.2x speed-up in comparison to state-of-the-art training methods for popular image classification tasks without compromising accuracy
    • …
    corecore