5 research outputs found

    Optimal Flow for Multi-Carrier Energy System at Community Level

    Get PDF

    Chance-Constrained Optimization for MultiEnergy Hub Systems in a Smart City

    Get PDF
    The energy hub is a powerful conceptualization of how to acquire, convert, and distribute energy resources in the smart city. However, uncertainties such as intermittent renewable energy injection present challenges to energy hub optimization. This paper solves the optimal energy flow of adjacent energy hubs to minimize the energy costs by utilizing the flexibility of energy resources in a smart city with uncertain renewable generation. It innovatively models the power and gas flows between hubs using chance constraints, thus permitting the temporary overloading acceptable on real energy networks. This novelty not only ensures system security but also helps reduce or defer network investment. By restricting the probability of chance constraints over a specific level, the energy hub optimization is formulated as a multiperiod stochastic problem with the total generation cost as the objective. Cornish-Fisher expansion is utilized to incorporate the chance constraints into the optimization, which transforms the stochastic problem into a deterministic problem. The interior-point method is then applied to resolve the developed model. The proposed chance-constrained optimization is demonstrated on a three-hub system and results extensively illustrate the impact of chance constraints on power and gas flows. This work can benefit energy hub operators by maximizing renewable energy penetration at the lowest cost in a smart city.</p

    Flexibility From Distributed Multienergy Systems

    Get PDF
    Multienergy systems (MES), in which multiple energy vectors are integrated and optimally operated, are key assets in low-carbon energy systems. Multienergy interactions of distributed energy resources via different energy networks generate the so-called distributed MES (DMES). While it is now well recognized that DMES can provide power system flexibility by shifting across different energy vectors, it is essential to have a systematic discussion on the main features of such flexibility. This article presents a comprehensive overview of DMES modeling and characterization of flexibility applications. The concept of ``multienergy node'' is introduced to extend the power node model, used for electrical flexibility, in the multienergy case. A general definition of DMES flexibility is given, and a general mathematical and graphical modeling framework, based on multidimensional maps, is formulated to describe the operational characteristics of individual MES and aggregate DMES, including the role of multienergy networks in enabling or constraining flexibility. Several tutorial examples are finally presented with illustrative case studies on current and future DMES practical applications

    Stochastic Modeling of Multienergy Carriers Dependencies in Smart Local Networks With Distributed Energy Resources

    No full text

    Sustainable distribution network planning considering multi-energy systems and plug-in electric vehicles parking lots

    Get PDF
    Entre todos os recursos associados à evolução das redes elétricas para o conceito de smart grid, os sistemas de multi-energia e os veículos eléctricos do tipo plug-in (PEV) são dois dos principais tópicos de investigação hoje em dia. Embora estes recursos possam acarretar uma maior incerteza para o sistema de energia, as suas capacidades de demanda/armazenamento flexível de energia podem melhorar a operacionalidade do sistema como um todo. Quando o conceito de sistemas de multi-energia e os parques de estacionamento com estações de carregamento para os PEVs são combinados no sistema de distribuição, a demanda pode variar significativamente. Sendo a demanda de energia uma importante informação no processo de planeamento, é essencial estimar de precisa essa demanda. Deste modo, três níveis padrão de carga podem ser extraídos tendo em conta a substituição da procura entre carriers de energia, a demanda associada ao carregamento dos PEVs, e presença de parques de estacionamento com estações de carregamento no sistema. A presença de PEVs num sistema multi-energia obriga a outros requisitos (por exemplo, um sistema de alimentação) que devem ser fornecidos pelo sistema, incluindo as estações de carregamento. A componente elétrica dos PEVs dificulta a tarefa ao operador do sistema na tentativa de encontrar a melhor solução para fornecer os serviços necessários e utilizar o potencial dos PEVs num sistema multi-energia. Contudo, o comportamento sociotécnico dos utilizadores de PEVs torna difícil ao operador do sistema a potencial gestão das fontes de energia associada às baterias. Desta forma, este estudo visa providenciar uma solução para os novos problemas que irão ocorrer no planeamento do sistema. Nesta tese, vários aspetos da integração de PEVs num sistema multi-energia são estudados. Primeiro, um programa de resposta à demanda é proposto para o sistema multi-energia com tecnologias do lado da procura que possibilitem alternar entre fornecedores de serviços. Em seguida, é realizado um estudo abrangente sobre as questões relativas à modelação dos PEVs no sistema, incluindo a modelação das incertezas, as preferências dos proprietários dos veículos, o nível de carregamento dos PEV e a sua interação com a rede. Posteriormente é proposta a melhor estratégia para a participação no mercado de energia e reserva. A alocação na rede e os possíveis efeitos subjacentes são também estudados nesta tese, incluindo o modelo dos PEVs e dos parques de estacionamento com estações de carregamento nesse sistema de multi-energia.Among all resources introduced by the evolution of smart grid, multi-energy systems and plugin electric vehicles are the two main challenges in research topics. Although, these resources bring new levels of uncertainties to the system, their capabilities as flexible demand or stochastic generation can enhance the operability of system. When the concept of multienergy systems and plug-in electric vehicles (PEV) parking lots are merged in a distribution system, the demand estimation may vary significantly. As the main feed of planning process, it is critical to estimate the most accurate amount of required demand. Therefore, three stages of load pattern should be extracted taking into account the demand substitution between energy carriers, demand affected by home-charging PEVs, and parking lot presence in system. The presence of PEVs in a multi-energy system oblige other requirements (i.e. fueling system) that should be provided in the system, including charging stations. However, the electric base of PEVs adds to the responsibilities of the system operator to think about the best solution to provide the required services for PEVs and utilize their potentials in a multi-energy concept. However, the socio-technical behavior of PEV users makes it difficult for the system operator to be able to manage the potential sources of PEV batteries. As a result, this study tries to raise the solution to new problems that will occur for the system planners and operators by the future components of the system. In this thesis, various aspects of integrating PEVs in a multi-energy system is studied.Firstly, a carrier-based demand response program is proposed for the multi-energy system with the technologies on the demand side to switch between the carriers for providing their services. Then, a comprehensive study on the issues regarding the modeling of the PEVs in the system are conducted including modeling their uncertain traffic behavior, modeling the preferences of vehicle owners on the required charging, modeling the PEV parking lot behavior and its interactions with the network. After that the best strategy and framework for participating the PEVs energy in the energy and reserve market is proposed. The allocation of the parking lot in the network and the possible effects it will have on the network constraints is studied. Finally, the derived model of the PEVs and the parking lot is added to the multi-energy system model with multi-energy demand
    corecore