2 research outputs found

    Stochastic Bundle Adjustment for Efficient and Scalable 3D Reconstruction

    Full text link
    Current bundle adjustment solvers such as the Levenberg-Marquardt (LM) algorithm are limited by the bottleneck in solving the Reduced Camera System (RCS) whose dimension is proportional to the camera number. When the problem is scaled up, this step is neither efficient in computation nor manageable for a single compute node. In this work, we propose a stochastic bundle adjustment algorithm which seeks to decompose the RCS approximately inside the LM iterations to improve the efficiency and scalability. It first reformulates the quadratic programming problem of an LM iteration based on the clustering of the visibility graph by introducing the equality constraints across clusters. Then, we propose to relax it into a chance constrained problem and solve it through sampled convex program. The relaxation is intended to eliminate the interdependence between clusters embodied by the constraints, so that a large RCS can be decomposed into independent linear sub-problems. Numerical experiments on unordered Internet image sets and sequential SLAM image sets, as well as distributed experiments on large-scale datasets, have demonstrated the high efficiency and scalability of the proposed approach. Codes are released at https://github.com/zlthinker/STBA.Comment: Accepted by ECCV 202

    Gaussian belief propagation for real-time decentralised inference

    Get PDF
    For embodied agents to interact intelligently with their surroundings, they require perception systems that construct persistent 3D representations of their environments. These representations must be rich; capturing 3D geometry, semantics, physical properties, affordances and much more. Constructing the environment representation from sensory observations is done via Bayesian probabilistic inference and in practical systems, inference must take place within the power, compactness and simplicity constraints of real products. Efficient inference within these constraints however remains computationally challenging and current systems often require heavy computational resources while delivering a fraction of the desired capabilities. Decentralised algorithms based on local message passing with in-place processing and storage offer a promising solution to current inference bottlenecks. They are well suited to take advantage of recent rapid developments in distributed asynchronous processing hardware to achieve efficient, scalable and low-power performance. In this thesis, we argue for Gaussian belief propagation (GBP) as a strong algorithmic framework for distributed, generic and incremental probabilistic estimation. GBP operates by passing messages between the nodes on a factor graph and can converge with arbitrary asynchronous message schedules. We envisage the factor graph being the fundamental master environment representation, and GBP the flexible inference tool to compute local in-place probabilistic estimates. In large real-time systems, GBP will act as the `glue' between specialised modules, with attention based processing bringing about local convergence in the graph in a just-in-time manner. This thesis contains several technical and theoretical contributions in the application of GBP to practical real-time inference problems in vision and robotics. Additionally, we implement GBP on novel graph processor hardware and demonstrate breakthrough speeds for bundle adjustment problems. Lastly, we present a prototype system for incrementally creating hierarchical abstract scene graphs by combining neural networks and probabilistic inference via GBP.Open Acces
    corecore