17 research outputs found

    Efficient Gradient-Based Inference through Transformations between Bayes Nets and Neural Nets

    Full text link
    Hierarchical Bayesian networks and neural networks with stochastic hidden units are commonly perceived as two separate types of models. We show that either of these types of models can often be transformed into an instance of the other, by switching between centered and differentiable non-centered parameterizations of the latent variables. The choice of parameterization greatly influences the efficiency of gradient-based posterior inference; we show that they are often complementary to eachother, we clarify when each parameterization is preferred and show how inference can be made robust. In the non-centered form, a simple Monte Carlo estimator of the marginal likelihood can be used for learning the parameters. Theoretical results are supported by experiments

    Auto-Encoding Variational Bayes

    Get PDF
    How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets? We introduce a stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case. Our contributions is two-fold. First, we show that a reparameterization of the variational lower bound yields a lower bound estimator that can be straightforwardly optimized using standard stochastic gradient methods. Second, we show that for i.i.d. datasets with continuous latent variables per datapoint, posterior inference can be made especially efficient by fitting an approximate inference model (also called a recognition model) to the intractable posterior using the proposed lower bound estimator. Theoretical advantages are reflected in experimental results

    Nested Variational Compression in Deep Gaussian Processes

    Get PDF
    Deep Gaussian processes provide a flexible approach to probabilistic modelling of data using either supervised or unsupervised learning. For tractable inference approximations to the marginal likelihood of the model must be made. The original approach to approximate inference in these models used variational compression to allow for approximate variational marginalization of the hidden variables leading to a lower bound on the marginal likelihood of the model [Damianou and Lawrence, 2013]. In this paper we extend this idea with a nested variational compression. The resulting lower bound on the likelihood can be easily parallelized or adapted for stochastic variational inference
    corecore