29,297 research outputs found
TSPO: kaleidoscopic 18-kDa amid biochemical pharmacology, control and targeting of mitochondria
The 18-kDa translocator protein (TSPO) localizes in the outer mitochondrial membrane (OMM) of cells and is readily up-regulated under various pathological conditions such as cancer, inflammation, mechanical lesions and neurological diseases. Able to bind with high affinity synthetic and endogenous ligands, its core biochemical function resides in the translocation of cholesterol into the mitochondria influencing the subsequent steps of (neuro-)steroid synthesis and systemic endocrine regulation. Over the years, however, TSPO has also been linked to core cellular processes such as apoptosis and autophagy. It interacts and forms complexes with other mitochondrial proteins such as the voltage-dependent anion channel (VDAC) via which signalling and regulatory transduction of these core cellular events may be influenced. Despite nearly 40 years of study, the precise functional role of TSPO beyond cholesterol trafficking remains elusive even though the recent breakthroughs on its high-resolution crystal structure and contribution to quality-control signalling of mitochondria. All this along with a captivating pharmacological profile provides novel opportunities to investigate and understand the significance of this highly conserved protein as well as contribute the development of specific therapeutics as presented and discussed in the present review
Leptin receptor in the chicken ovary: potential involvement in ovarian dysfunction of ad libitum-fed broiler breeder hens
In hens, the ovarian follicles committed to ovulation are arranged in an ordered follicular hierarchy. In standard broiler breeders hens genetically selected for high growth rate the reproductive function is clearly dysfunctional. Feed restriction is needed during reproductive development to limit the formation of excessive numbers of ovarian yellow follicles arranged in multiple hierarchies. To determine whether leptin is involved in the nutritional and reproductive interactions controlling follicular hierarchy in hens, blood leptin levels and ovarian expression of the leptin receptor mRNA were determined during follicle maturation in three chicken lines; a slow growing broiler "Label" genotype without reproductive dysfunction, a fast growing "Standard" genotype fed ad libitum or restricted and a fast growing "Experimental" line with intermediate reproductive performance levels. Whereas expression of the leptin receptor mRNA did not change in the theca, it clearly decreased with follicular differentiation in the granulosa of slow growing hens. In fast growing standard hens fed ad libitum and presenting significant reproductive dysfunction, the decrease was disrupted and dramatic up-regulation of granulosa cell expression of the leptin receptor was observed. On the other hand, feed restriction decreased the overall level of expression of the leptin receptor mRNA and restored the decrease with follicular growth. The level of expression of the leptin receptor probably modulates the action of leptin on follicular differentiation. Since blood leptin and other metabolic factors were not affected by the genotype or by nutritional state, the factors involved in the regulation of leptin receptor gene expression remain to be determined. This study demonstrates the involvement of leptin in the nutritional control of reproduction in birds. Leptin action on the ovary probably controls follicular hierarchy through the regulation of steroidogenesis
Insulin-Like Growth Factor II (IGF-II) Is More Potent Than IGF-I in Stimulating Cortisol Secretion from Cultured Bovine Adrenocortical Cells: Interaction with the IGF-I Receptor and IGF-Binding Proteins
Although the stimulating effect of insulin-like growth factor I (IGF-I) on adrenal steroidogenesis has been well established, the role of IGF-II in the adult adrenal gland remains unknown. We, therefore, investigated the effect of recombinant human IGF-II on cortisol and cAMP synthesis from adult bovine adrenocortical cells. IGF-II, time and dose dependently, stimulated basal cortisol secretion maximally 3-fold. In combination with ACTH, IGF-II (13 nM) synergistically increased cortisol secretion from 1-fold (10(-8) M ACTH) to 28-fold of untreated control levels. In contrast, IGF-I at equimolar concentrations did not show an effect on basal cortisol secretion, and in combination with ACTH elicited a significant weaker stimulatory effect than IGF-II (22-fold increase). The synergistic effect of IGF-II on ACTH-promoted cortisol secretion was paralleled by accumulation of cAMP in the culture medium. Although both IGF receptors are present in adult bovine adrenocortical cells, the effect of IGF-II seems to be mediated through interaction with the IGF-I receptor, as [Arg54,55]IGF-II, which only binds to the IGF-I receptor, was equipotent to native IGF-II, whereas [Leu27]IGF-II, which preferentially binds to the type II IGF receptor, did not show any effect. By Western ligand blotting, four different molecular forms of IGF-binding proteins (IGFBPs) were identified in conditioned medium of bovine adrenocortical cells with apparent molecular masses of 39-44, 34, 29, and 24 kilodaltons. ACTH treatment increased the abundance of all binding proteins, on the average, 2.3-fold, except for the 29-kDa band, which was predominantly induced 6.8-fold. Additionally, [des1-3]IGF-I, a truncated IGF variant that exhibits only minimal binding to IGFBPs, was significant more potent than IGF-I and elicited the same maximum stimulatory effect on cortisol secretion as IGF-II and [des1-6]IGF-II. In conclusion, these results demonstrate that 1) IGF-II stimulates basal as well as ACTH-induced cortisol secretion from bovine adrenocortical cells more potently than IGF-I; 2) this effect is mediated through interaction of IGF-II with the IGF-I receptor; 3) bovine adrenocortical cells synthesize various IGFBPs that are induced differentially by ACTH; and 4) IGFBPs apparently play a modulatory role in IGF-induced stimulation of adrenal steroidogenesis. Therefore, bovine adult adrenocortical cells provide a useful tissue culture model in which the interactions among locally produced IGFs, IGFBPs, and the IGF-I receptor can be evaluated
Regulation of 3β-Hydroxysteroid Dehydrogenase/∆5-∆4 Isomerase: A Review
This review focuses on the expression and regulation of 3β-hydroxysteroi ddehydrogenase/Δ5-Δ4 isomerase (3β-HSD), with emphasis on the porcine version. 3β-HSD is often associated with steroidogenesis, but its function in the metabolism of both steroids and xenobiotics is more obscure. Based on currently available literature covering humans,rodents and pigs, this review provides an overview of the present knowledge concerning the regulatory mechanisms for 3β-HSD at all omic levels. The HSD isoenzymes are essential in steroid hormone metabolism, both in the synthesis and degradation of steroids.
They display tissue-specific expression and factors influencing their activity, which therefore indicates their tissue-specific responses. 3β-HSD is involved in the synthesis of a number of natural steroid hormones, including progesterone and testosterone, and the hepatic degradation of the pheromone androstenone. In general, a number of signaling and regulatory pathways have been demonstrated to influence 3β-HSD transcription and activity, e.g., JAK-STAT, LH/hCG, ERα, AR, SF-1 and PPARα. The expression and enzymic activity of 3β-HSD are also influenced by external factors, such as dietary composition. Much of the research conducted on porcine 3β-HSD is motivated by its importance for the occurrence of the boar taint phenomenon that results from high concentrations of steroids such as androstenone. This topic is also examined in this review
Homozygous disruption of P450 side-chain cleavage (CYP11A1) is associated with prematurity, complete 46,XY sex reversal, and severe adrenal failure
Disruption of the P450 side-chain cleavage cytochrome (P450scc) enzyme due to deleterious mutations of the CYP11A1 gene is thought to be incompatible with fetal survival because of impaired progesterone production by the fetoplacental unit. We present a 46, XY patient with a homozygous disruption of CYP11A1.The child was born prematurely with complete sex reversal and severe adrenal insufficiency. Laboratory data showed diminished or absent steroidogenesis in all pathways. Molecular genetic analysis of the CYP11A1 gene revealed a homozygous single nucleotide deletion leading to a premature termination at codon position 288. This mutation will delete highly conserved regions of the P450scc enzyme and thus is predicted to lead to a nonfunctional protein. Both healthy parents were heterozygous for this mutation.Our report demonstrates that severe disruption of P450scc can be compatible with survival in rare instances. Furthermore, defects in this enzyme are inherited in an autosomal-recessive fashion, and heterozygote carriers can be healthy and fertile. The possibility of P450scc-independent pathways of steroid synthesis in addition to the current concept of luteoplacental shift of progesterone synthesis in humans has to be questioned
Co-culture of JEG-3, BeWo and syncBeWo cell lines with adrenal H295R cell line : an alternative model for examining endocrine and metabolic properties of the fetoplacental unit
New directions for the treatment of adrenal insufficiency
The following funding bodies supported this work: Biotechnology and Biological Sciences Research Council (BBSRC BB/L00267/1, to LG), Rosetrees Trust (to LG), Barts and The London Charity (417/2235, to LG), EU COFUND (PCOFUND-GA-2013-608765, to LG and GRB). IH is supported by a Medical Research Council (MRC, G0802796) PhD studentship
BPA-Induced Deregulation of Epigenetic Patterns: Effects on Female Zebrafish Reproduction
Bisphenol A (BPA) is one of the commonest Endocrine Disruptor Compounds worldwide. It interferes with vertebrate reproduction, possibly by inducing deregulation of epigenetic mechanisms. To determine its effects on female reproductive physiology and investigate whether changes in the expression levels of genes related to reproduction are caused by histone modifications, BPA concentrations consistent with environmental exposure were administered to zebrafish for three weeks. Effects on oocyte growth and maturation, autophagy and apoptosis processes, histone modifications, and DNA methylation were assessed by Real-Time PCR (qPCR), histology, and chromatin immunoprecipitation combined with qPCR analysis (ChIP-qPCR). The results showed that 5 μg/L BPA down-regulated oocyte maturation-promoting signals, likely through changes in the chromatin structure mediated by histone modifications, and promoted apoptosis in mature follicles. These data indicate that the negative effects of BPA on the female reproductive system may be due to its upstream ability to deregulate epigenetic mechanism
Relations of environmental contaminants, algal toxins, and diet with the reproductive success of American alligators on Florida Lakes
(113 page document
- …
