4,492 research outputs found

    Measurements of the Solid-body Rotation of Anisotropic Particles in 3D Turbulence

    Full text link
    We introduce a new method to measure Lagrangian vorticity and the rotational dynamics of anisotropic particles in a turbulent fluid flow. We use 3D printing technology to fabricate crosses (two perpendicular rods) and jacks (three mutually perpendicular rods). Time-resolved measurements of their orientation and solid-body rotation rate are obtained from stereoscopic video images of their motion in a turbulent flow between oscillating grids with RλR_\lambda=9191. The advected particles have a largest dimension of 6 times the Kolmogorov length, making them a good approximation to anisotropic tracer particles. Crosses rotate like disks and jacks rotate like spheres, so these measurements, combined with previous measurements of tracer rods, allow experimental study of ellipsoids across the full range of aspect ratios. The measured mean square tumbling rate, ⟹p˙ip˙i⟩\langle \dot{p}_i \dot{p}_i \rangle, confirms previous direct numerical simulations that indicate that disks tumble much more rapidly than rods. Measurements of the alignment of crosses with the direction of the solid-body rotation rate vector provide the first direct observation of the alignment of anisotropic particles by the velocity gradients of the flow.Comment: 15 pages, 7 figure

    Exploring Oculus Rift: A Historical Analysis of the ‘Virtual Reality’ Paradigm

    Get PDF
    This paper will first provide background information about Virtual Reality in order to better analyze its development throughout history and into the future. Next, this essay begins an in-depth historical analysis of how virtual reality has developed prior to 1970, a pivotal year in Virtual Reality history, followed by an exploration of how this development paradigm shifted between the 1970\u27s and the turn of the century. The historical analysis of virtual reality is concluded by covering the modern period from 2000-present. Finally, this paper examines the layout of the virtual reality field in respect to he history and innovations presented

    Interactive form creation: exploring the creation and manipulation of free form through the use of interactive multiple input interface

    Get PDF
    Most current CAD systems support only the two most common input devices: a mouse and a keyboard that impose a limit to the degree of interaction that a user can have with the system. However, it is not uncommon for users to work together on the same computer during a collaborative task. Beside that, people tend to use both hands to manipulate 3D objects; one hand is used to orient the object while the other hand is used to perform some operation on the object. The same things could be applied to computer modelling in the conceptual phase of the design process. A designer can rotate and position an object with one hand, and manipulate the shape [deform it] with the other hand. Accordingly, the 3D object can be easily and intuitively changed through interactive manipulation of both hands.The research investigates the manipulation and creation of free form geometries through the use of interactive interfaces with multiple input devices. First the creation of the 3D model will be discussed; several different types of models will be illustrated. Furthermore, different tools that allow the user to control the 3D model interactively will be presented. Three experiments were conducted using different interactive interfaces; two bi-manual techniques were compared with the conventional one-handed approach. Finally it will be demonstrated that the use of new and multiple input devices can offer many opportunities for form creation. The problem is that few, if any, systems make it easy for the user or the programmer to use new input devices

    The Evolution of Stop-motion Animation Technique Through 120 Years of Technological Innovations

    Get PDF
    Stop-motion animation history has been put on paper by several scholars and practitioners who tried to organize 120 years of technological innovations and material experiments dealing with a huge literature. Bruce Holman (1975), Neil Pettigrew (1999), Ken Priebe (2010), Stefano Bessoni (2014), and more recently AdriĂĄn Encinas Salamanca (2017), provided the most detailed even tough partial attempts of systematization, and designed historical reconstructions by considering specific periods of time, film lengths or the use of stop-motion as special effect rather than an animation technique. This article provides another partial historical reconstruction of the evolution of stop-motion and outlines the main events that occurred in the development of this technique, following criteria based on the innovations in the technology of materials and manufacturing processes that have influenced the fabrication of puppets until the present day. The systematization follows a chronological order and takes into account events that changed the technique of a puppets’ manufacturing process as a consequence of the use of either new fabrication processes or materials. Starting from the accident that made the French film-pioneer Georges MĂ©liĂšs discover the trick of the replacement technique at the end of the nineteenth century, the reconstruction goes through 120 years of experiments and films. “Build up” puppets fabricated by the Russian puppet animator Ladislaw Starevicz with insect exoskeletons, the use of clay puppets and the innovations introduced by LAIKA entertainment in the last decade such as Stereoscopic photography and the 3D computer printed replacement pieces, and then the increasing influence of digital technologies in the process of puppet fabrication are some of the main considered events. Technology transfers, new materials’ features, innovations in the way of animating puppets, are the main aspects through which this historical analysis approaches the previously mentioned events. This short analysis is supposed to remind and demonstrate that stop-motion animation is an interdisciplinary occasion of both artistic expression and technological experimentation, and that its evolution and aesthetic is related to cultural, geographical and technological issues. Lastly, if the technology of materials and processes is a constantly evolving field, what future can be expected for this cinematographic technique? The article ends with this open question and without providing an answer it implicitly states the role of stop-motion as a driving force for innovations that come from other fields and are incentivized by the needs of this specific sector

    Tractor cabin ergonomics analyses by means of Kinect motion capture technology

    Get PDF
    Kinect is the de facto standard for real-time depth sensing and motion capture cameras. The sensor is here proposed for exploiting body tracking during driving operations. The motion capture system was developed taking advantage of the Microsoft software development kit (SDK), and implemented for real-time monitoring of body movements of a beginner and an expert tractor drivers, on different tracks (straight and with curves) and with different driving conditions (manual and assisted steering). Tests show how analyses can be done not only in terms of absolute movements, but also in terms of relative shifts, allowing for quantification of angular displacements or rotations

    Mixed reality simulation of rasping procedure in artificial cervical disc replacement (ACDR) surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Until quite recently spinal disorder problems in the U.S. have been operated by fusing cervical vertebrae instead of replacement of the cervical disc with an artificial disc. Cervical disc replacement is a recently approved procedure in the U.S. It is one of the most challenging surgical procedures in the medical field due to the deficiencies in available diagnostic tools and insufficient number of surgical practices For physicians and surgical instrument developers, it is critical to understand how to successfully deploy the new artificial disc replacement systems. Without proper understanding and practice of the deployment procedure, it is possible to injure the vertebral body. Mixed reality (MR) and virtual reality (VR) surgical simulators are becoming an indispensable part of physicians’ training, since they offer a risk free training environment. In this study, MR simulation framework and intricacies involved in the development of a MR simulator for the rasping procedure in artificial cervical disc replacement (ACDR) surgery are investigated. The major components that make up the MR surgical simulator with motion tracking system are addressed. </p> <p>Findings</p> <p>A mixed reality surgical simulator that targets rasping procedure in the artificial cervical disc replacement surgery with a VICON motion tracking system was developed. There were several challenges in the development of MR surgical simulator. First, the assembly of different hardware components for surgical simulation development that involves knowledge and application of interdisciplinary fields such as signal processing, computer vision and graphics, along with the design and placements of sensors etc . Second challenge was the creation of a physically correct model of the rasping procedure in order to attain critical forces. This challenge was handled with finite element modeling. The third challenge was minimization of error in mapping movements of an actor in real model to a virtual model in a process called registration. This issue was overcome by a two-way (virtual object to real domain and real domain to virtual object) semi-automatic registration method.</p> <p>Conclusions</p> <p>The applicability of the VICON MR setting for the ACDR surgical simulator is demonstrated. The main stream problems encountered in MR surgical simulator development are addressed. First, an effective environment for MR surgical development is constructed. Second, the strain and the stress intensities and critical forces are simulated under the various rasp instrument loadings with impacts that are applied on intervertebral surfaces of the anterior vertebrae throughout the rasping procedure. Third, two approaches are introduced to solve the registration problem in MR setting. Results show that our system creates an effective environment for surgical simulation development and solves tedious and time-consuming registration problems caused by misalignments. Further, the MR ACDR surgery simulator was tested by 5 different physicians who found that the MR simulator is effective enough to teach the anatomical details of cervical discs and to grasp the basics of the ACDR surgery and rasping procedure</p

    Experience Design for Virtual Reality. From Illusion to Agency.

    Get PDF
    Virtual Reality (VR) allow viewers to inhabit and interact with virtual spaces in a way that has the potential to be much more compelling than any other medium, breaking through the barrier between merely watching to experiencing a situation or environment. It has an experiential quality by integrating the domains of interactive video games, filmmaking, storytelling and immersion. A balancing act between narrative design, digital placemaking and user agency. In this article, written from a practitioner’s perspective, I propose and demonstrate strategies in how immersive experiences can utilise multiple modes of representations, such as omnidirectional stereoscopic video and real-time 3D rendered geometry, to form a coherent spatial narrative environment for a viewer in VR. Particular emphasis will be placed on factors in visual perception; experience design including narration, scenography and user agency; and the technical conditions of the medium. This insight emerged from a series of recent VR projects, which are fundamentally different in terms of content, design and production techniques, but this diversity is an opportunity to lay the foundations for a classification system for VR experiences and establish a common language for this exciting new medium
    • 

    corecore