1,590 research outputs found

    The Evolution of Aortic Aneurysm Repair: Past Lessons and Future Directions

    Get PDF
    The history and evolution of aortic aneurysm repair demonstrates an important paradigm within surgery, namely the importance of surgical pioneers and innovators who have\ud strived to achieve technical excellence and improve patient care. It also highlights the wider evolution of surgery from traditional open operative techniques to the modern minimally invasive procedures. The following chapter discusses the surgical innovators and the techniques they have described that have enabled the repair of both thoracic aortic aneurysms (TAA) and abdominal aortic aneurysms (AAA).\ud Aortic aneurysms represent a significant health risk particularly for the elderly population. AAA is the 14th-leading cause of death for the 60- to 85-year–old age group in the United States (10.8 deaths per 100,000 population). TAA by contrast is less frequent with an incidence of 10.4 per 100,000. Both AAA and TAA are known to increase in prevalence with advancing age and have an increased prevalence in males. The risk of aneurysm rupture increases with increasing aneurysm diameter over 5.5-6.0 cm and is the primary indication for the repair of both TAA and AAA.Therefore surgery to repair both AAA and TAA is either pre-emptive to prevent rupture or emergent to repair a rupture. Repair of TAA and AAA by either open or minimally invasive techniques significantly reduces the risk of rupture and improves patient mortality. The establishment of these techniques has required the development of procedures from embryonic thoughts in the minds of the surgeons of antiquity through to the utilisation of ever increasing modern technologies

    Abdominal aortic aneurysm: Treatment options, image visualizations and follow-up procedures

    Get PDF
    Abdominal aortic aneurysm is a common vascular disease that affects elderly population. Open surgical repair is regarded as the gold standard technique for treatment of abdominal aortic aneurysm, however, endovascular aneurysm repair has rapidly expanded since its first introduction in 1990s. As a less invasive technique, endovascular aneurysm repair has been confirmed to be an effective alternative to open surgical repair, especially in patients with co-morbid conditions. Computed tomography (CT) angiography is currently the preferred imaging modality for both preoperative planning and post-operative follow-up. 2D CT images are complemented by a number of 3D reconstructions which enhance the diagnostic applications of CT angiography in both planning and follow-up of endovascular repair. CT has the disadvantage of high cummulative radiation dose, of particular concern in younger patients, since patients require regular imaging follow-ups after endovascular repair, thus, exposing patients to repeated radiation exposure for life. There is a trend to change from CT to ultrasound surveillance of endovascular aneurysm repair. Medical image visualizations demonstrate excellent morphological assessment of aneurysm and stent-grafts, but fail to provide hemodynamic changes caused by the complex stent-graft device that is implanted into the aorta. This article reviews the treatment options of abdominal aortic aneurysm, various image visualization tools, and follow-up procedures with use of different modalities including both imaging and computational fluid dynamics methods. Future directions to improve treatment outcomes in the follow-up of endovascular aneurysm repair are outlined

    Contrast-enhanced ultrasound and/or colour duplex ultrasound for surveillance after endovascular abdominal aortic aneurysm repair : a systematic review and economic evaluation

    Get PDF
    Study registration: This study is registered as PROSPERO CRD42016036475. Funding: The National Institute for Health Research Health Technology Assessment programme.Peer reviewedPublisher PD

    MRI with MR Angiography in Endovascular Repair of Abdominal Aortic Aneurysms

    Get PDF
    The aim of this study was to evaluate MRI with contrast enhanced MR angiography (MRI/CE MRA) as imaging method before and after endovascular repair of abdominal aortic aneurysms (AAA). A 1.5 T scanner was used for all examinations. In this prospective study 26 consecutive patients were included. Follow-up was performed between February 1995 and May 2002 (median follow-up; 36 months, range 8-84 months). In Paper I, we assessed the value of MRI/CE MRA as follow-up method. MRI/CE MRA provided the relevant information. MRI was the sole method demonstrating intramural thrombus organization and vertebral body infarction. In Paper II, we evaluated MR safety; ferromagnetism and heating of a nitinol stent-graft. Image artefacts were also evaluated on MRI/CE MRA and CT. In addition, an extended MR protocol including velocity mapping was assessed. MRI in a 1.5 T system may be performed safely in patients with the nitinol stent-graft (Vanguard). MRI/CE MRA provided diagnostic image information with only minor metal artefacts. Image evaluation on CT can be disturbed at the graft limb junction and graft bifurcation by the beam hardening artefacts. MR velocity mapping did not provide additional information. In Paper III, we compared measurements for stent-graft planning. MRI/CE MRA was compared with DSA and CT. The MRA post processing techniques MIP and VRT were also compared. The length measurements obtained with MRA-MIP were significantly shorter, but probably more correct, than those obtained with DSA. The diameter measurements obtained with MRI/CE MRA were more variable. Improvements of the MRA technique and a standardized determination of the vessel boundaries are needed for more reliable diameter measurements. In Paper IV, we compared costs of follow-up with MRI/CE MRA with costs of follow-up with CT with DSA, or CTA. The cost analysis included a risk analysis of contrast media induced nephropathy. MRI/CE MRA can be cost-effective for follow-up depending on the risk of contrast media induced nephropathy for CT with DSA, or CTA. In Paper V, we presented mid-term results with the Stentor and Vanguard stent-grafts assessed with MRI/CE MRA. Complications and secondary interventions were common. Long-term follow-up is mandatory. This study has shown that for MR-compatible stent-grafts, MRI/CE MRA could be the method of choice for follow-up of endovascularly repaired AAA. For patients with pre-existing renal insufficiency MRI/CE MRA should be the method of choice

    Feasibility of shear wave sonoelastography to detect endoleak and evaluate thrombus organization after endovascular repair of abdominal aortic aneurysm

    Full text link
    Purpose To investigate the feasibility of shear wave sonoelastography (SWS) for endoleak detection and thrombus characterization of abdominal aortic aneurysm (AAA) after endovascular repair (EVAR). Materials and methods Participants who underwent EVAR were prospectively recruited between November 2014 and March 2016 and followed until March 2019. Elasticity maps of AAA were computed using SWS and compared to computed tomography angiography (CTA) and color Doppler ultrasound (CDUS). Two readers, blinded to the CTA and CDUS results, reviewed elasticity maps and B-mode images to detect endoleaks. Three or more CTAs per participant were analyzed: pre-EVAR, baseline post-EVAR, and follow-ups. The primary endpoint was endoleak detection. Secondary endpoints included correlation between total thrombus elasticity, proportion of fresh thrombus, and aneurysm growth between baseline and reference CTAs. A 3-year follow-up was made to detect missed endoleaks, EVAR complication, and mortality. Data analyses included Cohen’s kappa; sensitivity, specificity, and positive predictive value (PPV); Pearson coefficient; and Student’s t tests. Results Seven endoleaks in 28 participants were detected by the two SWS readers (k = 0.858). Sensitivity of endoleak detection with SWS was 100%; specificity and PPV averaged 67% and 50%, respectively. CDUS sensitivity was estimated at 43%. Aneurysm growth was significantly greater in the endoleak group compared to sealed AAAs. No correlation between growth and thrombus elasticity or proportion of fresh thrombus in AAAs was found. No new endoleaks were observed in participants with SWS negative studies. Conclusion SWS has the potential to detect endoleaks in AAA after EVAR with comparable sensitivity to CTA and superior sensitivity to CDUS

    Maximum diameter measurements of aortic aneurysms on axial CT images after endovascular aneurysm repair: sufficient for follow-up?

    Full text link
    PURPOSE: To assess the accuracy of maximum diameter measurements of aortic aneurysms after endovascular aneurysm repair (EVAR) on axial computed tomographic (CT) images in comparison to maximum diameter measurements perpendicular to the intravascular centerline for follow-up by using three-dimensional (3D) volume measurements as the reference standard. MATERIALS AND METHODS: Forty-nine consecutive patients (73 ± 7.5 years, range 51-88 years), who underwent EVAR of an infrarenal aortic aneurysm were retrospectively included. Two blinded readers twice independently measured the maximum aneurysm diameter on axial CT images performed at discharge, and at 1 and 2 years after intervention. The maximum diameter perpendicular to the centerline was automatically measured. Volumes of the aortic aneurysms were calculated by dedicated semiautomated 3D segmentation software (3surgery, 3mensio, the Netherlands). Changes in diameter of 0.5 cm and in volume of 10% were considered clinically significant. Intra- and interobserver agreements were calculated by intraclass correlations (ICC) in a random effects analysis of variance. The two unidimensional measurement methods were correlated to the reference standard. RESULTS: Intra- and interobserver agreements for maximum aneurysm diameter measurements were excellent (ICC = 0.98 and ICC = 0.96, respectively). There was an excellent correlation between maximum aneurysm diameters measured on axial CT images and 3D volume measurements (r = 0.93, P < 0.001) as well as between maximum diameter measurements perpendicular to the centerline and 3D volume measurements (r = 0.93, P < 0.001). CONCLUSION: Measurements of maximum aneurysm diameters on axial CT images are an accurate, reliable, and robust method for follow-up after EVAR and can be used in daily routine

    Tissue Engineering: Proposed Graft for Aortic Aneurysms

    Get PDF
    The aorta is the main vessel exiting the heart, providing oxygenated blood to the systemic circulatory system. Because of its close proximity to the heart, the aorta must withstand and absorb high pressures. Not surprisingly, one of the most common problems associated with the aorta is due to this high-pressure environment, that being an aortic aneurysm. An aortic aneurysm is a rupture in a portion of the aortic wall that can potentially lead to death. To repair an aortic aneurysm, there are two surgeries, open chest surgery and endovascular aneurysm repair (EVAR), both of which insert stent grafts into the aorta to exclude the aneurysm. Complications can arise from either of these techniques or the stent graft used for repair. An autologous native vessel would be best in mimicking the native aorta, but given the current and near-future research, a biological stent graft could reduce the complications associated with the current procedures and stent grafts

    Strain ultrasound elastography of aneurysm sac content after randomized endoleak embolization with sclerosing and non-sclerosing chitosan-based hydrogels in a preclinical model

    Full text link
    Mise en contexte : La réparation endovasculaire des anévrismes de l’aorte abdominale est limitée par le développement des endofuites, qui nécessite un suivi à long terme par imagerie. L’élastographie sonore de déformation a été proposée comme méthode complémentaire pour aider à la détection des endofuites et la caractérisation des propriétés mécaniques des anévrismes. On s’intéresse ici également à la possibilité de suivre l’embolisation des endofuites, qui est indiquée dans certains cas mais dont le succès est variable. Un nouvel agent d’embolisation a été récemment créé en combinant un hydrogel de chitosane radio-opaque (CH) et le sclérosant tetradecyl sulfate de sodium (STS), qui s’appelle CH-STS. Le CH-STS démontre des propriétés mécaniques in vitro favorables, mais son comportement in vivo et son effet sur l’évolution du sac par rapport à un agent non-sclérosant pourraient être mieux caractérisés. L’objectif de cette étude était la caractérisation des propriétés mécaniques des composantes des endofuites embolisées avec CH-STS et CH avec élastographie sonore de déformation. Méthodologie : Des anévrismes bilatéraux avec endofuites de type I ont été créés au niveau des artères iliaques communes chez neuf chiens. Chez chaque sujet, une endofuite a été embolisée avec CH, et l’autre, avec CH-STS, d’une façon aléatoire et aveugle. Des images d’échographie duplex et des cinéloops pour élastographie sonore de déformation ont été acquis à 1 semaine, 1 mois, 3 mois et (chez 3 sujets) 6 mois post-embolisation. La tomodensitométrie a été faite à 3 mois et (si pertinente) 6 mois post-embolisation. L’histopathologie a été faite au sacrifice. Les études radiologiques et les données d’histopathologie ont été co-enregistrées pour définir trois régions d’intérêt sur les cinéloops : l’agent d’embolisation (au sacrifice), le thrombus intraluminal (au sacrifice) et le sac anévrismal (pendant chaque suivi). L’élastographie sonore de déformation a été faite avec les segmentations par deux observateurs indépendants. La déformation axiale maximale (DAM) a été le critère d’évaluation principal. Les analyses statistiques ont été faites avec des modèles mixtes linéaires généralisés et des coefficients de corrélations intraclasses (ICCs). Résultats : Des endofuites résiduelles ont été trouvées dans 7/9 (77.8%) et 4/9 (44.4%) des anévrismes embolisés avec CH et CH-STS, respectivement. Le CH-STS a eu une DAM 66 % plus basse (p < 0.001) que le CH. Le thrombus a eu une DAM 37% plus basse (p = 0.010) que le CH et 77% plus élevée (p = 0.079) que le CH-STS. Il n’y avait aucune différence entre les thrombi associés avec les deux traitements. Les sacs anévrismaux embolisés avec CH-STS ont eu une DAM 29% plus basse (p < 0.001) que ceux embolisés avec CH. Des endofuites résiduelles ont été associées avec une DAM du sac anévrismal 53% plus élevée (p < 0.001). Le ICC pour la DAM a été de 0.807 entre les deux segmentations. Conclusion : Le CH-STS confère des valeurs de déformations plus basses aux anévrismes embolisés. Les endofuites persistantes sont associées avec des déformations plus élevées du sac anévrismal.Background: Endovascular aneurysm repair (EVAR) is the modality of choice for the treatment of abdominal aortic aneurysms (AAAs). EVAR is limited by the development of endoleaks, which necessitate long-term imaging follow-up. Conventional follow-up modalities suffer from unique limitations. Strain ultrasound elastography (SUE) has been recently proposed as an imaging adjunct to detect endoleaks and to characterize aneurysm mechanical properties. Once detected, certain endoleaks may be treated with embolization; however, success is limited. In this context, the embolic agent CH-STS—containing a chitosan hydrogel and the sclerosant sodium tetradecyl sulphate (STS)—was created. CH-STS demonstrates favorable mechanical properties in vitro; however, its behavior in vivo and impact on sac evolution compared to a non-sclerosing chitosan-based embolic agent (CH) merit further characterization. Purpose: To compare the mechanical properties of the constituents of endoleaks embolized with CH and CH-STS—including the agent, the intraluminal thrombus (ILT), and the overall sac—via SUE. Methods: Bilateral common iliac artery aneurysms with type I endoleaks were created in nine dogs. In each animal, one endoleak was randomly embolized with CH, and the other with CH-STS. Duplex ultrasound (DUS) and radiofrequency cine loops were acquired at 1 week, 1 month, 3 months, and—in 3 subjects—6 months post-embolization. Contrast-enhanced CT was performed at 3 months and—where applicable—6 months post-embolization. Histopathological analysis was performed at time of sacrifice. Radiological studies and histopathological slides were co-registered to identify three regions of interest (ROIs) on the cine loops: embolic agent (at sacrifice), ILT (at sacrifice), and aneurysm sac (at all follow-up times). SUE was performed using segmentations from two independent observers on the cine loops. Maximum axial deformation (MAD) was the main outcome. Statistical analysis was performed using general linear mixed models and intraclass correlation coefficients (ICCs). Results: Residual endoleaks were identified in 7/9 (77.8%) and 4/9 (44.4%) aneurysms embolized with CH and CH-STS, respectively. CH-STS had a 66 % lower MAD (p < 0.001) than CH. The ILT had a 37% lower MAD (p = 0.010) than CH and a 77% greater MAD (p = 0.079; trending towards significance) than CH-STS. There was no difference in the ILT between treatment groups. Aneurysm sacs embolized with CH-STS had a 29% lower MAD (p < 0.001) than those with CH. Residual endoleak increased MAD of the aneurysm sac by 53% (p < 0.001), regardless of the agent used. The ICC for MAD was 0.807 between readers’ segmentations. Conclusion: CH-STS confers lower strain values to embolized aneurysms. Persistent endoleaks result are associated with increased sac strain, which may be useful for clinical follow-up
    • …
    corecore