6 research outputs found

    Hypergraphic LP Relaxations for Steiner Trees

    Get PDF
    We investigate hypergraphic LP relaxations for the Steiner tree problem, primarily the partition LP relaxation introduced by Koenemann et al. [Math. Programming, 2009]. Specifically, we are interested in proving upper bounds on the integrality gap of this LP, and studying its relation to other linear relaxations. Our results are the following. Structural results: We extend the technique of uncrossing, usually applied to families of sets, to families of partitions. As a consequence we show that any basic feasible solution to the partition LP formulation has sparse support. Although the number of variables could be exponential, the number of positive variables is at most the number of terminals. Relations with other relaxations: We show the equivalence of the partition LP relaxation with other known hypergraphic relaxations. We also show that these hypergraphic relaxations are equivalent to the well studied bidirected cut relaxation, if the instance is quasibipartite. Integrality gap upper bounds: We show an upper bound of sqrt(3) ~ 1.729 on the integrality gap of these hypergraph relaxations in general graphs. In the special case of uniformly quasibipartite instances, we show an improved upper bound of 73/60 ~ 1.216. By our equivalence theorem, the latter result implies an improved upper bound for the bidirected cut relaxation as well.Comment: Revised full version; a shorter version will appear at IPCO 2010

    Steiner Tree Approximation via Iterative Randomized Rounding

    Get PDF
    The Steiner tree problem is one of the most fundamental NP-hard problems: given a weighted undirected graph and a subset of terminal nodes, find a minimum-cost tree spanning the terminals. In a sequence of papers, the approximation ratio for this problem was improved from 2 to 1.55 [Robins,Zelikovsky-'05]. All these algorithms are purely combinatorial. A long-standing open problem is whether there is an LP relaxation of Steiner tree with integrality gap smaller than 2 [Vazirani,Rajagopalan-'99]. In this paper we present an LP-based approximation algorithm for Steiner tree with an improved approximation factor. Our algorithm is based on a, seemingly novel, \emph{iterative randomized rounding} technique. We consider an LP relaxation of the problem, which is based on the notion of directed components. We sample one component with probability proportional to the value of the associated variable in a fractional solution: the sampled component is contracted and the LP is updated consequently. We iterate this process until all terminals are connected. Our algorithm delivers a solution of cost at most ln(4)+\eps<1.39 times the cost of an optimal Steiner tree. The algorithm can be derandomized using the method of limited independence. As a byproduct of our analysis, we show that the integrality gap of our LP is at most 1.55, hence answering to the mentioned open question. This might have consequences for a number of related problems

    Steiner Trees in Uniformly Quasi-Bipartite Graphs

    No full text
    The area of approximation algorithms for the Steiner tree problem in graphs has seen continuous progress over the last years. Currently the best approximation algorithm has a performance ratio of 1:550. This is still far away from 1:0074, the largest known lower bound on the achievable performance ratio. As all instances resulting from known lower bound reductions are uniformly quasi-bipartite, it is interesting whether this special case can be approximated better than the general case. We present an approximation algorithm with performance ratio 73=60 &lt; 1:217 for the uniformly quasibipartite case. This improves on the previously known ratio of 1:279 of Robins and Zelikovsky. We use a new method of analysis that combines ideas from the greedy algorithm for set cover with a matroid-style exchange argument to model the connectivity constraint. As a consequence, we are able to provide a tight instance

    Steiner trees in uniformly quasi-bipartite graphs

    No full text
    The area of approximation algorithms for the Steiner tree problem in graphs has seen continuous progress over the last years. Currently the best approximation algorithm has a performance ratio of 1.550. This is still far away from 1.0074, the largest known lower bound on the achievable performance ratio. As all instances resulting from known lower bound reductions are uniformly quasi-bipartite, it is interesting whether this special case can be approximated better than the general case. We present an approximation algorithm with performance ratio 73/60 &lt; 1.217 for the uniformly quasi-bipartite case. This improves on the previously known ratio of 1.279 of Robins and Zelikovsky. We use a new method of analysis that combines ideas from the greedy algorithm for set cover with a matroid-style exchange argument to model the connectivity constraint. As a consequence, we are able to provide a tight instance

    Linear Programming Tools and Approximation Algorithms for Combinatorial Optimization

    Get PDF
    We study techniques, approximation algorithms, structural properties and lower bounds related to applications of linear programs in combinatorial optimization. The following "Steiner tree problem" is central: given a graph with a distinguished subset of required vertices, and costs for each edge, find a minimum-cost subgraph that connects the required vertices. We also investigate the areas of network design, multicommodity flows, and packing/covering integer programs. All of these problems are NP-complete so it is natural to seek approximation algorithms with the best provable approximation ratio. Overall, we show some new techniques that enhance the already-substantial corpus of LP-based approximation methods, and we also look for limitations of these techniques. The first half of the thesis deals with linear programming relaxations for the Steiner tree problem. The crux of our work deals with hypergraphic relaxations obtained via the well-known full component decomposition of Steiner trees; explicitly, in this view the fundamental building blocks are not edges, but hyperedges containing two or more required vertices. We introduce a new hypergraphic LP based on partitions. We show the new LP has the same value as several previously-studied hypergraphic ones; when no Steiner nodes are adjacent, we show that the value of the well-known bidirected cut relaxation is also the same. A new partition uncrossing technique is used to demonstrate these equivalences, and to show that extreme points of the new LP are well-structured. We improve the best known integrality gap on these LPs in some special cases. We show that several approximation algorithms from the literature on Steiner trees can be re-interpreted through linear programs, in particular our hypergraphic relaxation yields a new view of the Robins-Zelikovsky 1.55-approximation algorithm for the Steiner tree problem. The second half of the thesis deals with a variety of fundamental problems in combinatorial optimization. We show how to apply the iterated LP relaxation framework to the problem of multicommodity integral flow in a tree, to get an approximation ratio that is asymptotically optimal in terms of the minimum capacity. Iterated relaxation gives an infeasible solution, so we need to finesse it back to feasibility without losing too much value. Iterated LP relaxation similarly gives an O(k^2)-approximation algorithm for packing integer programs with at most k occurrences of each variable; new LP rounding techniques give a k-approximation algorithm for covering integer programs with at most k variable per constraint. We study extreme points of the standard LP relaxation for the traveling salesperson problem and show that they can be much more complex than was previously known. The k-edge-connected spanning multi-subgraph problem has the same LP and we prove a lower bound and conjecture an upper bound on the approximability of variants of this problem. Finally, we show that for packing/covering integer programs with a bounded number of constraints, for any epsilon > 0, there is an LP with integrality gap at most 1 + epsilon
    corecore