
Steiner Tree Approximation viaIterative Randomized Rounding1JAROS LAW BYRKAEPFL, Lausanne, Switzerland and University of Wro law, PolandandFABRIZIO GRANDONIUniversity of Rome Tor Vergata, Roma, ItalyandTHOMAS ROTHVO�EPFL, Lausanne, SwitzerlandandLAURA SANIT�AEPFL, Lausanne, SwitzerlandThe Steiner tree problem is one of the most fundamental NP-hard problems: given a weightedundireted graph and a subset of terminal nodes, �nd a minimum-ost tree spanning the terminals.In a sequene of papers, the approximation ratio for this problem was improved from 2 to 1:55[Robins,Zelikovsky-'05℄. All these algorithms are purely ombinatorial. A long-standing openproblem is whether there is an LP relaxation of Steiner tree with integrality gap smaller than 2[Vazirani,Rajagopalan-'99℄.In this paper we present an LP-based approximation algorithm for Steiner tree with an im-proved approximation fator. Our algorithm is based on a, seemingly novel, iterative randomizedrounding tehnique. We onsider an LP relaxation of the problem, whih is based on the notionof direted omponents. We sample one omponent with probability proportional to the value ofthe assoiated variable in a frational solution: the sampled omponent is ontrated and the LPis updated onsequently. We iterate this proess until all terminals are onneted. Our algorithmdelivers a solution of ost at most ln(4) + " < 1:39 times the ost of an optimal Steiner tree. Thealgorithm an be derandomized using the method of limited independene.As a byprodut of our analysis, we show that the integrality gap of our LP is at most 1:55,hene answering to the mentioned open question. This might have onsequenes for a number ofrelated problems.Categories and Subjet Desriptors: F.2.2 [Computations on disrete strutures℄: Non-numerial Algorithms and ProblemsGeneral Terms: Algorithms, TheoryAdditional Key Words and Phrases: Approximation algorithms, linear programming relaxations,network design, randomized algorithms1. INTRODUCTIONGiven an undireted n-node graph G = (V;E), with edge osts (or weights)  : E !Q+ , and a subset of nodes R � V (terminals), the Steiner tree problem asks fora tree S spanning the terminals, of minimum ost (S) := Pe2S (e). Note thatS might ontain some other nodes, besides the terminals (Steiner nodes). Steiner1A preliminary version of this paper appeared in STOC'10 [Byrka et al. 2010℄.Emails: J. Byrka jby�ii.uni.wro.pl, F. Grandoni grandoni�disp.uniroma2.it, T. Rothvo�thomas.rothvoss�epfl.h, L. Sanit�a laura.sanita�epfl.h.Journal of the ACM, Vol. ?, No. ?, ? 20?, Pages 1{0??.
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2 � Byrka et al.tree is one of the lassi and, probably, most fundamental problems in ComputerSiene and Operations Researh, with great theoretial and pratial relevane.This problem emerges in a number of ontexts, suh as the design of VLSI, optialand wireless ommuniation systems, as well as transportation and distributionnetworks (see, e.g., [Hwang et al. 1992℄).The Steiner tree problem appears already in the list of NP-hard problems inthe book by Garey and Johnson [1979℄. In fat, it is NP-hard to �nd solutions ofost less than 9695 times the optimal ost [Bern and Plassmann 1989; Chleb��k andChleb��kov�a 2008℄. Hene, the best one an hope for is an approximation algorithmwith a small but onstant approximation guarantee.Without loss of generality, we an replae the input graph by its metri losure2.A terminal spanning tree is a Steiner tree without Steiner nodes: suh a tree alwaysexists in the metri losure of the graph. It is well-known that a minimum-ostterminal spanning tree is a 2-approximation for the Steiner tree problem [Gilbertand Pollak 1968; Vazirani 2001℄.A sequene of improved approximation algorithms appeared in the literature[Karpinski and Zelikovsky 1997; Pr�omel and Steger 2000; Zelikovsky 1993℄, ulmi-nating with the famous 1 + ln(3)2 + " < 1:55 approximation algorithm by Robinsand Zelikovsky [2005℄. (Here " > 0 is an arbitrarily small onstant). All theseimprovements are based on the notion of k-restrited Steiner tree, whih is de�nedas follows. A omponent is a tree whose leaves oinide with a subset of terminals.A k-restrited Steiner tree S is a olletion of omponents, with at most k termi-nals eah (k-omponents), whose union indues a Steiner tree. The ost of S isthe total ost of its omponents, ounting dupliated edges with their multipliity(see [Borhers and Du 1997℄ for more details). The k-Steiner ratio �k � 1 is thesupremum of the ratio between the ost optk of the optimal k-restrited Steiner treeand the ost opt of the optimal (unrestrited) Steiner tree. The following result byBorhers and Du [1997℄ shows that, in order to have a good approximation, it issuÆient to onsider k-restrited Steiner trees for a large enough, onstant k.Theorem 1. [Borhers and Du 1997℄ Let r and s be the non-negative integerssatisfying k = 2r + s and s < 2r. Then�k = (r + 1)2r + sr2r + s � 1 + 1blog2 k :The mentioned approximation algorithms exploit the notion of k-omponentwithin a loal-searh framework. They start with a minimum-ost terminal span-ning tree (whih is 2-approximate), and iteratively improve it. At eah iteration,they add to the urrent solution a k-omponent, hosen aording to some greedystrategy, and remove redundant edges. The proess is iterated until no furtherimprovement is ahievable. Di�erent algorithms use di�erent greedy riteria.Despite the e�orts of many researhers in the last 10 years, the above frameworkdid not provide any further improvement after [Robins and Zelikovsky 2000; 2005℄.This motivated our searh for alternative methods. One standard approah is to2The metri losure of a weighted graph is a omplete weighted graph on the same node set, withweights given by shortest path distanes with respet to original weights.Journal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 3exploit a proper LP relaxation (see, e.g., [Goemans and Myung 1993℄ for a list of LPrelaxations of Steiner tree). A natural formulation for the problem is the undiretedut formulation (see [Goemans and Williamson 1995; Vazirani 2001℄). Here wehave a variable for eah edge of the graph and a onstraint for eah ut separatingthe set of terminals. Eah onstraint fores to pik at least one edge rossing theorresponding ut. Considering its LP relaxation, 2-approximation algorithms anbe obtained either using primal-dual shemes [Goemans and Williamson 1995℄ oriterative rounding [Jain 1998℄. However, this relaxation has an integrality gap of 2already in the spanning tree ase, i.e., when R = V (see example 22.10 in [Vazirani2001℄).Another well-studied, but more promising, LP is the bidireted ut relaxation[Chakrabarty et al. 2008; Edmonds 1967; Rajagopalan and Vazirani 1999℄. Let us�x an arbitrary terminal r (root). Replae eah edge fu; vg by two direted edges(u; v) and (v; u) of ost (fu; vg). For a given ut U � V , de�ne Æ+(U) = f(u; v) 2E j u 2 U; v =2 Ug as the set of edges leaving U . The mentioned relaxation isminXe2E (e)ze (BCR)s:t: Xe2Æ+(U) ze � 1; 8U � V n frg : U \ R 6= ;;ze � 0; 8e 2 E:We an onsider the value ze as the apaity whih we are going to install on thedireted edge e. The LP an then be interpreted as omputing the minimum-ostapaities that support a ow of 1 from eah terminal to the root. In a seminalwork, Edmonds [1967℄ showed that BCR is integral in the spanning tree ase.Theorem 2. [Edmonds 1967℄ For R = V , the polyhedron of BCR is integral.The best-known lower bound on the integrality gap of BCR was 8=7 [K�onemannet al. 2007; Vazirani 2001℄. The best-known upper bound is 2, though BCR isbelieved to have a smaller integrality gap than the undireted ut relaxation [Ra-jagopalan and Vazirani 1999℄. Chakrabarty et al. [2008℄ report that the strutureof the dual to BCR is highly asymmetri, whih ompliates a primal-dual ap-proah. Moreover, iterative rounding based on piking a single edge annot yieldgood approximations, as was pointed out in [Rajagopalan and Vazirani 1999℄.Finding a better-than-2 LP relaxation of the Steiner tree problem is a long-standing open problem [Chakrabarty et al. 2008; Rajagopalan and Vazirani 1999℄.We remark that good LP-bounds, besides potentially leading to better approxima-tion algorithms for Steiner tree, might have a muh wider impat. This is beauseSteiner tree appears as a building blok in several other problems, and the bestapproximation algorithms for some of those problems are LP-based. Strong LPsare also important in the design of (pratially) eÆient and aurate heuristis.1.1 Our Results and TehniquesThe main result of this paper is as follows.Theorem 3. For any onstant " > 0, there is a polynomial-time (ln(4) + ")-approximation algorithm for the Steiner tree problem.Journal of the ACM, Vol. ?, No. ?, ? 20?.



4 � Byrka et al.
(a) r(b)Fig. 1. (a) A Steiner tree S, where retangles denote terminals and irles represent Steiner nodes.(b) Edges of S are direted towards a root r. The direted omponents of S are depited withdi�erent olors.This an be improved to 73=60+ " in the well-studied speial ase of quasi-bipartitegraphs (where non-terminal nodes are pairwise not adjaent).Our algorithm is based on the following direted-omponent ut relaxation forthe Steiner tree problem (a similar relaxation is onsidered in [Polzin and Vahdati-Daneshmand 2003℄). Consider any subset of terminals R0 � R, and any r0 2 R0. LetC be the minimum-ost Steiner tree on terminals R0, with edges direted towardsr0 (direted omponent). For a given direted omponent C, we let (C) be itsost, and sink(C) be its unique sink terminal. We all the remaining terminalssoures(C) := V (C) \ R n fsink(C)g. The set of omponents obtained this way isdenoted by Cn. We say that a direted omponent C 2 Cn rosses a set U � R ifC has at least one soure in U and the sink outside. By Æ+Cn(U) we denote the setof direted omponents rossing U . Furthermore, we hoose an arbitrary terminalr as a root. Our LP relaxation is then:min XC2Cn (C)xC (DCR)s:t: XC2Æ+Cn(U)xC � 1; 8U � R n frg; U 6= ;;xC � 0; 8C 2 Cn:DCR is trivially a relaxation of the Steiner tree problem. In fat, one an diret theedges of the optimal Steiner tree S� towards terminal r, and split the edge set of S�at interior terminals. This yields a set of direted omponents C � Cn (see Figure1). Observe that any C 2 C must be an optimal Steiner tree on terminals R\V (C).Consequently, setting xC = 1 for any C 2 C, and the remaining variables to zero,provides a feasible solution to DCR of ost PC2C (C) = (S�) = opt.Unfortunately the ardinality of Cn is exponential. However, we will see that, forany onstant " > 0, one an ompute a (1 + ")-approximate frational solution toDCR in polynomial time. This is ahieved by restriting Cn to the direted om-ponents Ck that ontain at most a (big) onstant number k of terminals (diretedk-omponents).We ombine our LP with a (to the best of our knowledge) novel iterative random-ized rounding tehnique. We solve the LP (approximately), sample one omponentC with probability proportional to its value xC in the near-optimal frational so-lution x, ontrat C into its sink node sink(C), and reoptimize the LP. We iteratethis proess until only one terminal remains, i.e., until all terminals are onnetedJournal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 5by the sampled omponents. A fairly simple analysis provides a 3=2 + " boundon the approximation ratio. With a re�ned analysis, we improve this bound toln(4) + ". Our algorithm an be derandomized.We remark that our algorithm ombines features of randomized rounding (wheretypially variables are rounded randomly, but simultaneously) and iterative round-ing (where variables are rounded iteratively, but deterministially). We believe thatour iterative randomized rounding tehnique will also �nd other appliations, andis heneforth of independent interest.The key insight in our analysis is to quantify the expeted redution of the ost ofthe optimal Steiner tree in eah iteration. To show this, we exploit a novel BridgeLemma, relating the ost of terminal spanning trees with the ost of frationalsolutions to DCR. The proof of the lemma is based on Theorem 2 [Edmonds 1967℄.In our opinion, our analysis is simpler (or at least more intuitive) than the onein [Robins and Zelikovsky 2005℄.As an easy onsequene of our analysis, we obtain that the integrality gap of DCRis at most 1 + ln(2) < 1:694, hene answering to the mentioned open problem in[Chakrabarty et al. 2008; Rajagopalan and Vazirani 1999℄. Combining our BridgeLemma with the algorithm and analysis by Robins and Zelikovsky [2005℄, we obtainthe following improved result.Theorem 4. For any " > 0, there is an algorithm for the Steiner tree problemwhih omputes a solution of ost at most 1+ ln(3)2 + " times the ost of the optimalfrational solution to DCR. The running time of the algorithm is polynomial foronstant ".The above theorem immediately implies a 1 + ln(3)=2 < 1:55 upper bound on theintegrality gap of DCR, by letting " tend to zero (the running time is irrelevantwith that respet). As mentioned before, integrality gap results of this type oftenprovide new insights into variants and generalizations of the original problem. Weexpet that this will be the ase with the above theorem as well, sine Steiner treeappears as a building blok in many other problems.We also show that the integrality gap of DCR and BCR are at least 8=7 > 1:142and 36=31 > 1:161, respetively.1.2 Related WorkA sign of importane of the Steiner tree problem is that it appears either as asubproblem or as a speial ase of many other problems in network design. A(ertainly inomplete) list ontains Steiner forest [Agrawal et al. 1995; Goemansand Williamson 1995℄, prize-olleting Steiner tree [Arher et al. 2009; Goemansand Williamson 1995℄, virtual private network [Eisenbrand and Grandoni 2005;Eisenbrand et al. 2007; Grandoni and Rothvo� 2010; Gupta et al. 2001; Rothvo�and Sanit�a 2009℄, single-sink rent-or-buy [Eisenbrand et al. 2008; Grandoni andRothvo� 2010; Gupta et al. 2007; Jothi and Raghavahari 2009℄, onneted failityloation [Eisenbrand et al. 2008; Swamy and Kumar 2004℄, and single-sink buy-at-bulk [Grandoni and Italiano 2006; Gupta et al. 2007; Grandoni and Rothvo� 2010;Talwar 2002℄.Both the previously ited primal-dual and iterative rounding approximation teh-niques apply to a more general lass of problems. In partiular, the iterativeJournal of the ACM, Vol. ?, No. ?, ? 20?.



6 � Byrka et al.rounding tehnique introdued by Jain [1998℄ provides a 2-approximation for theSteiner network problem, and the primal-dual framework developed by Goemansand Williamson [1995℄ gives the same approximation fator for a large lass ofonstrained forest problems.Regarding the integrality gap of LP relaxations of the Steiner tree problem, upperbounds better than 2 are known only for speial graph lasses. For example, BCRhas an integrality gap smaller than 2 on quasi-bipartite graphs, where non-terminalnodes indue an independent set. For suh graphs Rajagopalan and Vazirani [1999℄(see also [Rizzi 2003℄) gave an upper bound of 3=2 on the gap. This was reentlyimproved to 4=3 by Chakrabarty, Devanur and Vazirani [2008℄. Still, for this lassof graphs the lower bound of 8=7 holds [K�onemann et al. 2007; Vazirani 2001℄.K�onemann, Prithard and Tan [2007℄ showed that for a di�erent LP formulation,whih is stronger than BCR, the integrality gap is upper-bounded by 2b+1b+1 , where bis the maximum number of Steiner nodes in full omponents. All the mentioned LPsan be solved in polynomial time, while we solve DCR only approximately: froma tehnial point of view, we indeed solve exatly a relaxation of the k-restritedSteiner tree problem.Finally, we remark that under additional onstraints, Steiner tree admits betterapproximations. In partiular, a PTAS an be obtained by the tehnique of Arora[1998℄ if the nodes are points in a �xed-dimension Eulidean spae, and using thealgorithm of Borradaile, Kenyon-Mathieu and Klein [2007℄ for planar graphs.1.3 OrganizationThe rest of this paper is organized as follows. In Setion 2 we give some de�nitionsand basi results. In Setion 3 we show how to approximate DCR and prove ourBridge Lemma. In Setion 4 we present a simple expeted (1:5+ ")-approximationfor the problem. This result is improved to ln(4) + " in Setion 5. The speialase of quasi-bipartite graphs is onsidered in Setion 5.1. We derandomize ouralgorithm in Setion 6. Finally, in Setion 7 we disuss the integrality gap of DCR,and ompare DCR with BCR.2. PRELIMINARIESWe use Opt to denote the optimal integral solution, and opt = (Opt). The ostof an optimal solution to DCR (for the input instane) is termed optf . We willonsider algorithms onsisting of a sequene of iterations, eah one onsideringdi�erent subproblems. We will use an apex to denote the onsidered iteration t.For example, opttf denotes the ost of an optimal frational solution at the beginningof iteration t.For a given (direted or undireted) omponent C, R(C) := R \ V (C) is theset of its terminals. Reall that DCR has an exponential number of variables andonstraints. For this reason, our algorithms will onsider approximate solutions toDCR with a polynomial-size support. Therefore, it is notationally onvenient torepresent a solution to DCR as a pair (x;C), where C � Cn is a subset of diretedomponents and x = fxCgC2C denotes the values that are assoiated to eah suhomponent. (Other variables are assumed to have value zero).Let T be a minimum-ost terminal spanning tree. It is a well-known fat that(T ) � 2 � opt (see e.g. Theorem 3.3 in [Vazirani 2001℄). Extending the standardJournal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 7proof, this bound also holds w.r.t. our LP relaxation.Lemma 5. One has (T ) � 2 � optf .Proof. Let (x;C) be an optimal frational solution to DCR. For eah omponentC 2 C, obtain an undireted TSP tour on R(C) of ost at most 2(C), remove oneedge of the tour, and diret the remaining edges towards sink(C). Install apaityxC umulatively on the direted edges of the resulting arboresene. This induesa frational solution to DCR of ost at most 2 � optf , with the property that onlyomponents with 2 terminals and without Steiner nodes are used. This also providesa feasible frational solution to BCR of the same ost. Sine BCR without Steinernodes is integral by Theorem 2, the laim follows.Let R0 be a subset of k terminals. Consider a given Steiner tree S, with edgeweights , ontaining the terminals R0. The weight funtion  assoiated to S, if notspei�ed, will be lear from the ontext. Let us ollapse the terminals R0 into onenode, and all G0 the resulting (possibly, multi-)graph. Let S0 � S be a minimumspanning tree of G0. Observe that S0 will ontain all the edges of S but k � 1edges, sine ollapsing R0 dereases the number of nodes in S by k� 1. We all thelatter edges the bridges of S w.r.t. R0, and denote them by BrS(R0)3. Intuitively,if we imagine to add zero ost dummy edges between the terminals R0, BrS(R0)is a maximum-ost subset of edges that we ould remove from S and still have aonneted spanning subgraph. In other terms,BrS(R0) = argmaxn(B) j B � S; SnB [ �R02 � onnets V (S)o:Let us abbreviate brS(R0) := (BrS(R0)). For a (direted or undireted) omponentC 0, we use BrS(C 0) and brS(C 0) as shortuts for BrS(R(C 0)) and brS(R(C 0)),respetively.In the analysis, it is often onvenient to turn a given Steiner tree S into a rooted,possibly non-omplete, binary tree as follows (see, e.g., [Karpinski and Zelikovsky1997℄). By adding dummy nodes and dummy edges of ost zero, we an assumethat the leaves of S oinide with its terminals, and that internal (Steiner) nodeshave degree exatly three. Then we split any edge by adding a dummy node v anda dummy edge of ost zero, and we root the tree at v. Note that the resultingrooted binary tree has height at most jRj � 1. Given this redution, it is easy toprove the following standard result.Lemma 6. For any Steiner tree S on terminals R, brS(R) � 12(S):Proof. Turn S into a rooted binary tree as desribed above. For eah Steinernode of S, mark the most expensive edge out of the edges going to its 2 hildren. LetB � S be the set of marked edges. Observe that (B) � 12(S). Furthermore, afterontrating R, one an remove B while keeping S onneted. From the de�nitionof bridges it follows that brS(R) � (B) � 12(S).Throughout this paper, we sometimes identify a subgraph G0 with its set of edgesE(G0).3As usual, we break ties aording to edge indexes. Journal of the ACM, Vol. ?, No. ?, ? 20?.



8 � Byrka et al.3. A DIRECTED-COMPONENT CUT RELAXATIONIn this setion we show how to solve DCR approximately (Setion 3.1), and proveour Bridge Lemma (Setion 3.2).3.1 Approximating DCRWe next show how to ompute a (1 + ")-approximate solution to DCR, for anygiven onstant " > 0, in polynomial time. This is ahieved in two steps. First ofall, we introdue a relaxation k-DCR of the k-restrited Steiner tree problem. Thisrelaxation an be solved exatly in polynomial time for any onstant value of theparameter k (Lemma 8). Then we show that the optimal solutions to k-DCR andDCR are lose for large-enough k (Lemma 7).Let Ck � Cn denote the set of direted omponents with at most k terminals,and let Æ+Ck (U) := Æ+Cn(U) \ Ck. By the same arguments as for the unrestritedase, the following is a relaxation of the k-restrited Steiner tree problem:min XC2Ck (C)xC (k-DCR)s:t: XC2Æ+Ck (U) xC � 1; 8U � R n frg; U 6= ;;xC � 0; 8C 2 Ck:Let optf;k be the value of the optimal frational solution to k-DCR. Trivially,optf;k � optf sine any feasible solution to k-DCR is also feasible for DCR. We anexploit the result by Borhers and Du [1997℄ to show that optf;k is indeed lose tooptf for large k.Lemma 7. One has optf;k � �k � optf .Proof. Let (x;C) be an optimal frational solution for DCR. We show how toonstrut a solution (x0;C0) to k-DCR with the laimed property. For any ompo-nent C 2 C, we an apply Theorem 1 to obtain a list of undireted omponentsC1; : : : ; C` suh that: (a) Sì=1 Ci onnets the terminals in C, (b) any Ci ontainsat most k terminals, and () Pì=1 (Ci) � �k � (C). Next, we diret the edges ofall Ci's onsistently towards sink(C) and inrease the value of x0Ci by xC for eahCi. The resulting solution (x0;C0) satis�es the laim.It remains to solve k-DCR for k = O(1). For any �xed k, in polynomial time onean onsider any subset R0 � R of at most k terminals, and ompute an optimalSteiner tree Z on R04. By onsidering eah r0 2 R0, and direting the edges of Ztowards r0, one obtains all the direted omponents on terminals R0. Consequently,jCkj = O(knk) and the k-omponents an be listed in polynomial time.Lemma 8. The optimal solution to k-DCR an be omputed in polynomial timefor any onstant k.4We reall that, given k terminals, the dynami-programming algorithm by Dreyfus and Wagner[1972℄ omputes an optimal Steiner tree among them in O(3kn+ 2kn2 + n3) worst-ase time. Afaster parameterized algorithm an be found in [M�olle et al. 2006℄.Journal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 9Proof. We de�ne a direted auxiliary graph G0 = (V 0; E0), on node set V 0 =R [ fvC j C 2 Ckg. For every omponent C, insert edges (u; vC) for any u 2soures(C), and one edge eC = (vC ; sink(C)). We observe that k-DCR is equivalentto a non-simultaneous multiommodity ow problem, where any terminal in R sendsone unit of ow to the root and edges eC have ost (C).More preisely k-DCR is equivalent to the following ompat LP:min XC2Ck (C)xCs:t: Xe2Æ+(v) fs(e)� Xe2Æ�(v) fs(e) = 8><>:1 if v = s;�1 if v = r;0 if v 2 V n fr; sg; 8s 2 R n frg;fs(eC) � xC ; 8s 2 R n frg; C 2 Ck;fs(e); xC � 0; 8s 2 R n frg; e 2 E0; C 2 Ck:Here fs(e) denotes the ow that terminal s sends aross edge e and the apaity onedge eC is xC = maxs2Rnfrg fs(eC). An optimal solution of the latter LP an beomputed in polynomial time, see e.g. [Khahiyan 1979; Gr�otshel et al. 1981℄5.Putting everything together, we obtain the desired approximate solution to DCR.Lemma 9. For any �xed " > 0, a (1 + ")-approximate solution (x;C) to DCRan be omputed in polynomial time.Proof. It is suÆient to solve k-DCR for k := 2d1="e with the algorithm fromLemma 8. Observe that �k � 1+ " (see again Theorem 1). The laim follows fromLemma 7.3.2 The Bridge LemmaWe next prove our Bridge Lemma, whih is the heart of our analysis. This lemmarelates the ost of any terminal spanning tree to the ost of any frational solutionto DCR via the notion of bridges, and its proof is based on Edmonds' Theorem 2.A key ingredient in the proof of our lemma is the onstrution of a proper weightedterminal spanning tree Y . Consider a Steiner tree S on terminals R. We de�ne abridge weight funtion w : R�R! Q+ as follows: For any terminal pair u; v 2 R,the quantity w(u; v) is the maximum ost of any edge in the unique u-v path inS. Reall that BrS(R0) is the set of bridges of S with respet to terminals R0, andbrS(R0) denotes its ost.Lemma 10. Let S be any Steiner tree on terminals R, and w : R �R ! Q+ bethe assoiated bridge weight funtion. For any subset R0 � R of terminals, there isa tree Y � R0 �R0 suh that(a) Y spans R0.(b) w(Y ) = brS(R0).() For any fu; vg 2 Y , the u-v path in S ontains exatly one edge from BrS(R0).5Note that this LP an even be solved in strongly-polynomial time using the Frank-Tardos algo-rithm [Frank and Tardos 1987℄ Journal of the ACM, Vol. ?, No. ?, ? 20?.
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Fig. 2. Steiner tree S is drawn in blak. Terminals of R0 are gray shaded. Bold blak edgesindiate BrS(R0) = fb1; : : : ; b4g. The orresponding edges e1; : : : ; e4 of Y are drawn in gray andlabeled with w(ei). Note that w(ei) = (bi). Observe also that b3 is the unique bridge on theyle ontained in S [ fe3g.Proof. Let BrS(R0) = fb1; b2; : : : ; bk�1g be the set of bridges. Observe thatS n BrS(R0) is a forest of trees F1; : : : ; Fk, where eah Fi ontains exatly oneterminal ri 2 R0. Eah bridge bi onnets exatly two trees Fi0 and Fi00 . For eahbi, we add edge ei = fri0 ; ri00g to Y . Observe that Y ontains k nodes and k � 1edges. Assume by ontradition that Y ontains a yle, say e1; e2; : : : ; eg . Replaeeah ei = fri0 ; ri00g with Fi0 [ Fi00 [ fbig: the resulting graph is a yli subgraphof S, a ontradition. Hene Y is a spanning tree on R0.The path Pi between ri0 and ri00 ontains bi and no other bridge. Hene bi is amaximum-ost edge on Pi, and w(ei) = (bi) (see Figure 2). The laim follows.Lemma 11. [Bridge Lemma℄ Let T be a terminal spanning tree and (x;C) be afeasible solution to DCR. Then(T ) � XC2CxC � brT (C):Proof. For every omponent C 2 C, we onstrut a spanning tree YC on R(C)with weight w(YC) = brT (C) aording to Lemma 10. Then we diret the edgesof YC towards sink(C). Let us install umulatively apaity xC on the (direted)edges of YC , for eah C 2 C. This way we obtain a direted apaity reservationy : R � R ! Q+ , with y(u; v) := PYC3(u;v) xC . The direted tree YC supportsat least the same ow as omponent C with respet to R(C). It then follows thaty supports one unit of ow from eah terminal to the root. In other terms, y isa feasible frational solution to BCR. By Edmond's Theorem 2, BCR is integralwhen no Steiner node is used. As a onsequene there is an (integral) terminalspanning tree F that is not more ostly than the frational solution y, i.e., w(F ) �Pe2R�R w(e)y(e).Reall that w(u; v), for u; v 2 R, is the maximum ost of any edge of the uniqueyle in T [fu; vg. It follows from the lassi yle rule for minimum spanning treeomputation that w(F ) � (T ) (see, e.g., Theorem 6.2 in [Korte and Vygen 2002℄).Journal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 11(1) For t = 1; 2; : : :(1a) Compute a (1+ "2 )-approximate solution (xt;Ct) to DCR (w.r.t. the urrent instane).(1b) Sample one omponent Ct, where Ct = C with probability xtC=PC02Ct xtC0 . ContratCt into its sink.(1) If a single terminal remains, return Sti=1 Ci.Fig. 3. A (ln(4) + ")-approximation algorithm for Steiner tree.AltogetherXC2CxCbrT (C) = XC2CxCw(YC) = Xe2R�Rw(e)y(e) � w(F ) � (T ):4. ITERATIVE RANDOMIZED ROUNDINGIn this setion we present our approximation algorithm for Steiner tree. To highlightthe novel ideas of the approximation tehnique more than the approximation fatoritself, we present a simpli�ed analysis providing a weaker 3=2 + " approximationfator (whih is already an improvement on the previous best 1:55 approximation).The more omplex analysis leading to ln(4) + " is postponed to Setion 5.The approximation algorithm for Steiner tree is desribed in Figure 3. In Step(1a) we use the algorithm from Lemma 9. Reall that the ardinality of Ct isupperbounded by a valueM whih, for any �xed " > 0, is bounded by a polynomialin n. Contrating a omponent Ct means ollapsing all its terminals into its sinksink(Ct), whih inherits all the edges inident to Ct (in ase of parallel edges, weonly keep the heapest one). We let Optt denote the optimal Steiner tree at thebeginning of iteration t, and let optt be its ost. By opttf we denote the ost of theoptimal frational solution at the beginning of iteration t.Observe that PC2Ct xtC � M , and this quantity might vary over the iterationst. In order to simplify the analysis, we add a dummy omponent �C formed by theroot only (hene of ost zero) to ensure that in fatXC2Ct xtC =M; 8t � 1:Note that adding suh dummy omponent orresponds to inserting idle iterationsinto the algorithm. But the expeted ost of the produed solution remains thesame.The expeted ost of the produed solution is:Xt�1 E[(Ct)℄ �Xt�1 XC2CtEhxtCM (C)i � 1 + "2M Xt�1E[opttf ℄ � 1 + "2M Xt�1 E[optt℄ (1)Thus, in order to obtain a good approximation guarantee, it suÆes to provide agood bound on E[optt℄.4.1 A �rst boundA simple onsequene of the Bridge Lemma is that the ost of the minimum terminalspanning tree dereases by a fator (1 � 1M ) per iteration in expetation. Thisimplies an upper bound on opttf via Lemma 5 (while later bounds will hold for opttonly). The bound on opttf implies the �rst non-trivial bounds on the approximationJournal of the ACM, Vol. ?, No. ?, ? 20?.



12 � Byrka et al.guarantee of our algorithm (due to the fat that opttf � optt) and on the integralitygap of our LP.Lemma 12. One has E[opttf ℄ � �1� 1M �t�1 � 2optf .Proof. Let T t be the minimum-ost terminal spanning tree at the beginning ofiteration t. By Lemma 5, (T 1) � 2optf . For any iteration t > 1, the redution inthe ost of T t w.r.t. T t�1 is at least brT t�1(Ct). Therefore:E[(T t)℄ � (T t�1)�E[brT t�1(Ct�1)℄= (T t�1)� 1M XC2Ct�1 xt�1C � brT t�1(C)Bridge Lem 11� �1� 1M� � (T t�1):By indution E[opttf ℄ � E[(T t)℄ � �1� 1M �t�1 � 2optf :Observe that the bound from Lemma 12 improves over the trivial bound opttf �optf for t > M � ln(2). Nevertheless it suÆes to prove the following result.Theorem 13. For any �xed " > 0, there is a randomized polynomial-time al-gorithm whih omputes a solution to the Steiner tree problem of expeted ost atmost (1 + ln(2) + ") � optf .Proof. Assume without loss of generality that M � ln(2) is integral. Combin-ing (1) with Lemma 12, the expeted approximation fator isE "Pt�1 (Ct)optf # � 1 + "=2M Xt�1 E "opttfoptf #� 1 + "=2M Xt�1min(1; 2�1� 1M�t�1)� 1 + "=2M 0�M � ln(2) + Xt�M �ln(2)+1 2�1� 1M�t�11A� �1 + "2� ln(2) + 2�1� 1M�M �ln(2)!� �1 + "2��ln(2) + 2e� ln(2)� � 1 + ln(2) + ":Above we used the equation Pt�t0 xt = xt01�x for 0 < x < 1 and the inequality(1� 1=x)x � 1=e for x � 1.Observe that Theorem 13 implies that the integrality gap of DCR is at most 1+ln(2).In Setion 7 we will re�ne this bound on the gap to 1 + ln(3)=2.Journal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 134.2 A seond boundIn order to further improve the approximation guarantee we show that, in eahiteration, the ost optt of the optimal (integral) Steiner tree of the urrent instanedereases by a fator (1 � 12M ) in expetation. We remark that it is not knownwhether this bound holds also for opttf . Also in this ase the proof relies ruiallyon the Bridge Lemma.Lemma 14. Let S be any Steiner tree and (x;C) be a feasible solution to DCR.Sample a omponent C 2 C suh that C = C 0 with probability xC0=M . Then thereis a subgraph S0 � S suh that S0 [ C spans R andE[(S0)℄ � �1� 12M� � (S):Proof. It suÆes to prove that E[brS(C)℄ � 12M (S). Turn S into a rootedbinary tree with the usual proedure. Then, for any Steiner node in S, hoose theheapest edge going to one of its hildren. The set H � S of suh seleted edgeshas ost (H) � 12(S). Furthermore any Steiner node is onneted to one terminalusing edges of H . Consider the terminal spanning tree T that emerges from S byontrating H . By the Bridge Lemma 11,E[brT (C)℄ = 1M XC02CxC0 � brT (C 0) � 1M (T ):Observe also that BrT (C) is a feasible set of bridges for S with respet to C, andthus brS(C) � brT (C). Altogether:E[brS(C)℄ � E[brT (C)℄ � 1M (T ) = 1M ((S)� (H)) � 12M (S):Iterating Lemma 14 yields the following orollary.Corollary 15. For every t � 1,E[optt℄ � �1� 12M�t�1 � opt:We now have all the ingredients to show a (3=2 + ")-approximation fator.Theorem 16. For any " > 0, there is a polynomial-time randomized approxi-mation algorithm for Steiner tree with expeted approximation ratio 3=2 + ".Proof. Assume without loss of generality that M � ln(4) is integral. CombiningJournal of the ACM, Vol. ?, No. ?, ? 20?.



14 � Byrka et al.(1) with Lemma 12 and Corollary 15, the expeted approximation fator is:E "Pt�1 (Ct)opt # � 1 + "=2M Xt�1 E �opttopt �� 1 + "=2M Xt�1min(2�1� 1M�t�1 ; �1� 12M�t�1)� 1 + "=2M 0�M �ln(4)Xt=1 �1� 12M�t�1 + Xt�M �ln(4)+1 2�1� 1M�t�11A= �1 + "2� � 2� 2 � �1� 12M�M �ln(4) + 2�1� 1M�M �ln(4)!� �1 + "2� � �2� 2 � e� ln(4)=2 + 2e� ln(4)� � 3=2 + ":Above we exploited the equation Pt0t=1 xt�1 = 1�xt01�x for 0 < x < 1. We also usedthe fat that (1 � 1y )ln(4)y � (1 � 12y )ln(4)y is an inreasing funtion of y > 1, andthat limy!1(1� 1y )y = 1e .5. A REFINED ANALYSISIn this setion we present a re�ned (ln(4)+ ") approximation bound for our Steinertree algorithm.We �rst give a high-level desription of our analysis. Let S� := Opt be theoptimal Steiner tree for the original instane (in partiular, (S�) = opt). Eahtime we sample a omponent Ct, we will delete a proper subset of edges fromS�. Consider the sequene S� = S1 � S2 � : : : of subgraphs of S� whih areobtained this way. We will guarantee that at any iteration t, the edge set St plusthe previously sampled omponents yields a subgraph that onnets all terminals.Furthermore, we will prove that a �xed edge e 2 S� is deleted after an expetednumber of at most ln(4) �M iterations. This immediately implies the approximationfator of ln(4) + ".In order to trak whih edges an be safely deleted from S�, we will onstrut anarti�ial terminal spanning tree W (the witness tree) and assign a random subsetW (e) of edges of W to eah edge e 2 S� (the witnesses of e). At eah iteration,when omponent Ct is sampled, we mark a proper random subset BrW (Ct) ofedges of W . As soon as all the edges of W (e) are marked, edge e is deleted fromS�. Summarizing, we onsider the following random proess:For t = 1; 2; : : :, sample one omponent Ct from (xt;Ct) and mark theedges in BrW (Ct). Delete an edge e from S� as soon as all edges inW (e) are marked.The subgraph St is formed by the edges of S� whih are not yet deleted at thebeginning of iteration t.The hoie of BrW (Ct) guarantees that, deterministially, the unmarked edgesW 0 plus the sampled omponents onnet all the terminals. The hoie of W (e)Journal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 15
3 1 1 2 1 3 1 22e0 1 2 11 1

f0 f1 (a) (b)Fig. 4. (a) Optimal Steiner tree S� in blak, where bold edges indiate the hosen edges ~B, and theassoiated terminal spanning tree W in gray. Edges e in S� are labeled with jW (e)j. For exampleW (e0) = ff0; f1g. (b) Marked edges inW at a given iteration t are drawn dotted; the non-deletededges in S� (i.e., edges of St) are drawn in blak. Non-marked edges of W and non-deleted edgesof S� support the same onnetivity on R.ensures that, deterministially, if W 0 plus the sampled omponents onnet allthe terminals, then the sampled omponents plus the undeleted edges St = fe 2S� j W (e) \W 0 6= ;g do the same. Hene the St's have the laimed onnetivityproperties. The analysis then redues to show that all the edges inW (e) are markedwithin a small enough number of iterations (in expetation).We next de�ne W , W (�), and BrW (�). Turn S� into a rooted binary tree withthe usual proedure. Reall that the height of the binary tree is at most jRj � 1.For eah Steiner node, hoose uniformly at random one of the two edges to itshildren. Let ~B denote the hosen edges. Clearly Pr[e 2 ~B℄ = 12 for any e 2 S�.Let Puv � S� be the unique u-v path in S�. The witness tree isW := nfu; vg 2 �R2� j jPuv \ ~Bj = 1o :Similarly to arguments in Lemma 10, W is a terminal spanning tree. For eah edgee 2 S�, de�ne W (e) := ffu; vg 2 W j e 2 Puvg:See Figure 4(a) for an illustration. As we will see, W (e) is small in expetation. Itremains to de�ne BrW (�). For a given omponent C 2 C, let the set of andidatebridges BW (C) beBW (C) := fB �W j jBj = jR(C)j � 1; (WnB) [ C onnets V (W )g:Intuitively, BW (C) is the family of bridge sets of W with respet to C that oneobtains for varying ost funtions. The set BrW (Ct) is hosen randomly in BW (C),aording to a proper probability distribution wC : BW (C) ! [0; 1℄, whih will bedesribed in the following. Observe that BrW (C) 2 BW (C). The intuitive reasonfor using a random element of BW (C) rather than BrW (C) is that we wish to markthe edges of W in a more uniform way. This, in ombination with the small size ofW (e), guarantees that edges are deleted quikly enough.Next lemma shows that the undeleted edges plus the sampled omponents onnetthe terminals. Journal of the ACM, Vol. ?, No. ?, ? 20?.



16 � Byrka et al.Lemma 17. The graph St [St�1t0=1 Ct0 spans R.Proof. Let W 0 � W be the set of edges whih are not yet marked at thebeginning of iteration t (see also Figure 4(b)). By the de�nition of BW (C) andbeing BrW (C) 2 BW (C), W 0 [St�1t0=1 Ct0 spans R. Consider any edge fu; vg 2 W 0.Then fu; vg 2 W (e) for all e 2 Puv . Hene no edge on Puv is deleted. Therefore uand v are also onneted in St. The laim follows.Note that 1 � jW (e)j � jRj � 1. Observe also that jW (e)j = 1 if e 2 ~B. Indeed,the expeted ardinality of W (e) is small also for the remaining edges.Lemma 18. For any edge e 2 S� at level ke � jRj� 1 (edges inident to the rootare at level one), one hasPr[jW (e)j = q℄ = 8><>:1=2q if 1 � q < ke;2=2q if q = ke;0 otherwise:Proof. Consider the path v0; v1; : : : ; vke from e towards the root. In partiular,e = fv0; v1g. If (vq�1; vq) is the �rst edge from ~B on this path, then jW (e)j = q.This is beause, for eah node vj , j � 1, there is one distint path Puv with fu; vg 2W that ontains e (see also Figure 4(a)). This event happens with probability 1=2q.If there is no edge from ~B on the path v0; v1; : : : ; vke , jW (e)j = ke by a similarargument. The latter event happens with probability 1=2ke . The laim follows.Next lemma proves the existene of random variables BrW (�) suh that eah edgeof W is marked at eah iteration with probability at least 1=M . Its proof is basedon a ombination of Farkas' Lemma with our Bridge Lemma.Lemma 19. There is a hoie of the random variables BrW (�) suh that eahedge e 2W is marked with probability at least 1=M at eah iteration.Proof. Consider any given iteration. Let (x;C) be the orresponding solution toDCR, and C� be the sampled omponent in that iteration. In partiular, C� = Cwith probability xC=M = xC=PC02C xC0 . In this iteration we mark the edgesBrW (C�), where Pr[BrW (C�) = B℄ = wC�(B) for any B 2 BW (C�). We will showthat there is a hoie of the wC 's, C 2 C, suh thatX(C;B):B2BW (C);e2B xC � wC(B) � 1; 8e 2W:This implies the laim sinePr[e 2 BrW (C�)℄ = X(C;B):B2BW (C);e2B xCM � wC(B) � 1M :Suppose by ontradition that suh probability distributions wC do not exist.Journal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 17Then the following linear system has no solution6:XB2BW (C)wC(B) � 1; 8C 2 C;X(C;B):B2BW (C);e2B xC � wC(B) � 1; 8e 2W ;wC(B) � 0; 8C 2 C; 8B 2 BW (C):Farkas' Lemma7 yields that there is a vetor (y; ) � 0 with(a) yC �Pe2B exC ; 8C 2 C; 8B 2 BW (C);(b) PC2C yC <Pe2W e:Let us interpret  as an edge ost funtion. In partiular, (W ) := Pe2W e andbrW (C) is the ost of the bridges of W with respet to omponent C and this ostfuntion. One hasyC (a)� xC �maxf(B) j B 2 BW (C)g = xC � brW (C):Then XC2CxC � brW (C) � XC2C yC (b)< Xe2W e = (W );whih ontradits the Bridge Lemma 11.We next show that, for small jW (e)j, all the edges of W (e) are marked (andhene e is deleted) within a small number of iterations. A handwaving argumentworks as follows. Let jW (e)j = q. Similarly to the Coupons Colletor problem (seee.g. [Mitzenmaher and Upfal 2005℄), it takes in expetation Mq iterations until the�rst edge is marked, then Mq�1 iterations to hit the seond one and so forth. Finallyall edges are marked after an expeted number of M � ( 1q + 1q�1 + : : :+1) = Hq �Miterations. (Here Hq :=Pqi=1 1i denotes the q-th harmoni number). However, thisargument does not reet the fat that a set BrW (Ct) might ontain several edgesfrom W (e). A more areful argument inorporates this ompliation.For ~W � W , let X( ~W ) denote the �rst iteration when all the edge in ~W aremarked. Observe that St = fe 2 S� j X(W (e)) � tg.Lemma 20. Let ~W �W . Then the expeted number of iterations until all edgesin ~W are marked satis�es E[X( ~W )℄ � Hj ~W j �M:Proof. Let q = j ~W j. By mq we denote the best possible upper bound on theexpeted number of iterations until all edges of ~W are marked (over all feasibleprobability distributions). We will prove that mq � Hq �M by indution on q.6We an replae the \=" onstraint with \�" without a�eting feasibility sine all oeÆients ofwC(B) are non-negative.79x � 0 : Ax � b __ 9z � 0 : zTA � 0; zT b < 0. Journal of the ACM, Vol. ?, No. ?, ? 20?.



18 � Byrka et al.For q = 1, the only edge in ~W is marked with probability at least 1M at eahiteration, hene m1 �M . Next, let q > 1 and onsider the �rst iteration. Supposethat �i is the probability that at least i many edges are marked in this iteration.Sine the expeted number of marked edges must be at least q � 1M in the �rstiteration, this distribution has to satisfy Pqi=1 �i � qM . Note that �0 = 1 and�q+1 = 0. For notational onveniene, let m0 := 0.If we ondition on the event that i 2 f0; : : : ; qg edges are marked in the �rstiteration, we need in expetation at most mq�i more iterations until the remainingq � i edges are marked. Hene we obtain the following bound:mq � 1 + qXi=0 Pr �exatly i edges markedat the �rst iteration � �mq�iindutivehypothesis� 1 +M � qXi=1(�i � �i+1)Hq�i + (1� �1)mq= 1 +M � qXi=1 �i � (Hq�i �Hq�i+1)| {z }��1=q +�1HqM + (1� �1)mq� 1� 1qM � qXi=1 �i| {z }�q=M +�1HqM + (1� �1)mq� �1HqM + (1� �1)mq :From �1 > 0 we obtain mq � Hq �M . The laim follows.Now we have all the ingredients to prove the expeted (ln(4)+ ") approximationfator.Theorem 21. For any onstant " > 0, there is a polynomial-time randomizedapproximation algorithm for the Steiner tree problem with expeted approximationratio ln(4) + ".Proof. For an edge e 2 S�, we de�ne D(e) = maxft j e 2 Stg as the iterationJournal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 19in whih e is deleted. One hasE[D(e)℄ = keXq=1Pr[jW (e)j = q℄ �E[D(e) j jW (e)j = q℄Lem 20� keXq=1Pr[jW (e)j = q℄ �Hq �MLem 18= ke�1Xq=1 �12�q �Hq �M + 22ke �Hke �M� Xq�1 �12�q �Hq �M= M �Xq�1 1qXi�0 �12�q+i= M �Xq�1 1q�12�q�1 = ln(4) �M:The expeted ost of the approximate solution satis�esEhXt�1 (Ct)i �Xt�1 1 + "=2M E�opttf �� 1 + "=2M Xt�1 E �(St)�= 1 + "=2M Xe2S�E[D(e)℄ � (e) � (ln(4) + ") � opt:The laim follows.5.1 A ( 7360 + ")-Approximation for Quasi-Bipartite GraphsIn this setion we onsider the speial ase of quasi-bipartite graphs. Reall that weall a graph G = (V;E) quasi-bipartite if no pair of non-terminal nodes u; v 2 V nRis onneted by an edge. We show that our algorithm has an approximation ratioof at most 7360 + " < 1:217 (for " small enough). This improves over the previouslybest known fator of 1.28 in [Robins and Zelikovsky 2005℄. Note that Gr�opl et al.[2002℄ show the bound of 7360 for the more restrited ase of uniform quasi-bipartitegraphs, where all edges inident to a non-terminal node have the same ost. Forthis lass the integrality gap of the hypergraphi LP relaxation by Chakrabartyet al. [2010a℄ an also be bounded by 7360 .Again let S� be an optimal Steiner tree, whih now is quasi-bipartite. LetZ1; : : : ; Z` be its (undireted) omponents. In partiular, eah Zi is a star witha single Steiner node as enter and terminals as leaves. We an improve the ap-proximation guarantee by hoosing the witness tree W in a more eonomial way,exploiting the struture of S�. For eah i = 1; : : : ; `, we add to the hosen edges ~Ball the edges of Zi but one edge hosen uniformly at random. Again for u; v 2 R,Journal of the ACM, Vol. ?, No. ?, ? 20?.



20 � Byrka et al.let Puv be the unique u-v path in S�. We letW := ffu; vg 2 �R2� j jPuv \ ~Bj = 1g:Observe that W will in fat be a terminal spanning tree. The analysis is now muhsimpler.Theorem 22. For any onstant " > 0, there is a polynomial-time randomizedapproximation algorithm for the Steiner tree problem on quasi-bipartite graphs withexpeted approximation ratio 7360 + ".Proof. We still onsider the algorithm in Figure 3. For an edge e 2 S�, wede�ne D(e) = maxft j e 2 Stg as the iteration in whih e is deleted. Let k be thenumber of terminals in the star Zi that ontains e. With probability 1k one hasjW (e)j = k � 1, and otherwise jW (e)j = 1. Hene, by Lemma 20,E[D(e)℄ � 1k �Hk�1 �M + �1� 1k� �H1 �M = �1k �Hk�1 + k � 1k � �M � 7360 �M:In the last inequality we used the fat that 1k �Hk�1 + k�1k is maximized for k = 5.The laim follows along the same line as in Theorem 21.6. DERANDOMIZATIONIn this setion, we show how to derandomize the result from Setion 5 using themethod of limited independene (see, e.g., [Alon and Spener 2008℄). This way, weprove Theorem 3.We start (Setion 6.1) by presenting an alternative, phase-based algorithm, whihupdates the LP only a onstant number of times (the phases). Then we show(Setion 6.2) how to sample omponents in eah phase with a logarithmi numberof random bits.6.1 A Phase-Based Randomized AlgorithmConsider the algorithm from Figure 5. The basi idea behind the algorithm isgrouping iterations into phases. In eah phase, we keep the LP unhanged. Thedetails on how to sample omponents in eah phase are given later.(1) For phase s = 1; 2; : : : ; 1="2(1a) Compute a (1 + ")-approximate well-rounded solution (xs;Cs) to DCR (w.r.t. theurrent instane).(1b) Sample �s omponents Cs;1; : : : ; Cs;�s from Cs aording to xs, and ontrat them.(2) Compute a minimum-ost terminal spanning tree T in the remaining instane.(3) Output T [ S1="2s=1 S�si=1 Cs;i.Fig. 5. Phase-based sampling algorithmWe may assume that the omputed DCR solution (xs;Cs) is well-rounded, i.e.,� jCsj = m for a prime number m,� xsC = 1N for all C 2 Cs and N � 1 is bounded by a polynomial in n.Journal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 21This an be ahieved as follows: One omputes a (1 + "2 )-approximate solution(x;C). Say h = jCj. Then we round up all entries in x to the nearest multiple of1N for N := 8h=" and term the obtained solution x0. Using the generous estimate(C) � 2optf (following from Lemma 5) we obtain, for " � 1,XC2Cx0C � (C) � �1 + "2� � �optf + XC2C "8h(C)� � (1 + ")optf :Next, replae a omponent C by x0C � N many opies. Let m0 be the number ofobtained omponents (ounted with multipliities). Then we an ompute a primenumber m 2 [m0; 2m0℄ (see e.g. [Niven et al. 1991℄) and add m � m0 dummyomponents C ontaining only the root, eah one with x0C := 1N . This yields afeasible well-rounded solution as desired. We furthermore assume8 that m � N="2and 1=" is integer.For ~W � W , let �X( ~W ) denote the �rst phase when all edges in ~W are marked.Analogously, �D(e) is the phase when all the edges in W (e) are marked. For nota-tional onveniene, we interpret Step (2) as a �nal phase when all the edges of Ware marked (so that �X( ~W ) and �D(e) are well de�ned). The next lemma is a simpleadaptation of Lemma 20.Lemma 23. Let ~W �W . Suppose eah edge is marked at eah phase with prob-ability at least p 2℄0; 1℄. Then the expeted number of phases until all edges in ~Ware marked satis�es E[ �X( ~W )℄ � Hj ~W j � 1p :Proof. By a oupling argument, we an assume that the number of phases isunbounded. The laim follows along the same line as the proof of Lemma 20,replaing the notion of iteration with the notion of phase and the probability 1=Mwith p.We next bound the approximation fator of the algorithm for a generi samplingproedure (satisfying some properties).Lemma 24. Suppose that Step (1b) satis�es the following two properties:(a) Eah omponent C is sampled with probability at most � � xsC(b) Eah edge e in the witness tree is marked with probability at least �.Then the approximation fator of the algorithm in Figure 5 is at most ln(4)�( (1+")�� +2"2� ).Proof. As in the proof of Theorem 21, one hasE[ �D(e)℄ = keXq=1Pr[jW (e)j = q℄ � E[ �D(e) j jW (e)j = q℄Lem 18+23� Xq�1 �12�q �Hq � 1� = ln(4) � 1� : (2)8If 1T x = mN = O(1) and jCj = O(1) for C 2 C, then the number of terminals would be boundedby a onstant { in this ase an optimum solution an be omputed in polynomial time.Journal of the ACM, Vol. ?, No. ?, ? 20?.



22 � Byrka et al.Let opts be the ost of an optimal Steiner tree at the beginning of phase s. Theexpeted ost of the sampled omponents satis�esEh 1="2Xs=1 �sXi=1 (Cs;i)i � 1="2Xs=1 XC2CsE[� � xsC � (C)℄� �(1 + ") � 1="2Xs=1 E[opts℄� �(1 + ") Xe2S�E[ �D(e)℄ � (e) (2)� ln(4) � �(1 + ")� opt:Let S0 := fe 2 S� j �D(e) > 1="2g be a feasible Steiner tree at the end of the lastphase. By Markov's inequality and (2),Pr[ �D(e) > 1="2℄ � ln(4)"2� :Therefore E[(S0)℄ � ln(4) "2� � opt. The minimum-ost terminal spanning tree is atmost twie that expensive, hene E[(T )℄ � 2 ln(4) "2� � opt. The laim follows.Lemma 24 suggests an alternative way to implement the algorithm from Setion 5.Consider the following natural implementation of Step (1b):(Independent Phase Sampling)Sample �s = " �M omponents Cs;1; : : : ; Cs;�s independently (with rep-etitions), where Cs;i = C 2 Cs with probability xsC=M .The Independent Phase Sampling samples a omponent C with a probabilityof at most �s � 1M �xsC = " �xsC . On the other hand, the probability that edge e 2 Wis marked is essentially lower bounded by ". Inspeting Lemma 24, we see that� � � � ", whih gives the following orollary.Corollary 25. The algorithm from Figure 5 whih implements Step (1b) withthe Independent Phase Sampling is (ln(4)+O("))-approximate in expetation.This provides a 1:39-approximation algorithm that needs to solve just a onstant(rather than polynomial) number of LPs. In partiular, its running time mightbe ompetitive with the better-than-2 approximation algorithms in the literature.But a drawbak of the Independent Phase Sampling implementation is that itneeds too many (namely polynomially many) random bits: hene it is not easy toderandomize. For this reason we introdue a more omplex sampling proedure inthe next subsetion.6.2 A Dependent Sampling ProedureWe next desribe an alternative implementation of Step (1b), whih still guarantees� � � � ", and requires only O(log n) random bits. We fous on a spei� phases and an edge e 2 W . Let (x;C) := (xs;Cs). We renumber the omponents suhthat C = (C0; : : : ; Cm�1), and we let xj := xCj = 1N .(Dependent Phase Sampling)Journal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 23(i) Choose A 2 f0; : : : ;m � 1g and B 2 f1; : : : ;m � 1g uniformly andindependently at random.(ii) Selet Cj with j 2 J := fA+ i � B mod m j i = 1; : : : ; b "Nmg.Observe that Step (ii) requires only O(logm) random bits. Sine m = nO(1), thisnumber of bits is O(log n).We will show that: (1) any omponent Cj is sampled with probability no morethan �xj , � := " and (2) edge e is marked with probability at least � := "(1� 2").The �rst laim is easy to show.Lemma 26. Implementing Step (1b) with the Dependent Phase Sampling,eah omponent Cj is sampled with probability at most " � xj .Proof. For any omponent Cj , Pr[j 2 J ℄ = 1m � b "Nm � "N = " � xj .Showing laim (2) is more involving.Lemma 27. Implementing Step (1b) with the Dependent Phase Sampling,eah edge e 2 W is marked with probability at least "(1� 2").Proof. Let wCj be the probability distribution for omponent Cj as in Lemma 19.Reall that Pr[BrW (Cj) = B℄ = wCj (B) andÆ := m�1Xj=0 xj XB2BW (Cj):e2BwCj (B) � 1:Let yj := PB2BW (Cj):e2B wCj (B) denote the probability that e is marked, giventhat Cj is sampled. Sine xj = 1N , we have Pm�1j=0 yj = ÆN . There lies no harmin assuming that Æ = 1, sine the probability that e is marked is inreasing in theyj 's.Let Ej be the event that Cj is sampled and e 2 BrW (Cj). It is suÆient to showthat Pr[Sm�1j=0 Ej ℄ � "(1 � 2"). The ruial insight is to obtain a lower bound onPr[Ej ℄ and an upper bound on Pr[Ej \ Ej0 ℄ for j 6= j0. First of all, we havePr[Ej ℄ = yj � Pr[j 2 J ℄ = yj � j"mN k � 1m � "(1� ")yjN ; (3)using that "mN � 1" by assumption. Seondly, let j; j0 2 f0; : : : ;m� 1g be distintomponent indies. Then j; j0 2 J if and only if the systemj �m A+Bi (4)j0 �m A+Bi0has a solution i; i0. But sine Zm is a �eld, for any distint pair i; i0 2 f1; : : : ; b "mN g,there is preisely one pair (A;B) 2 f0; : : : ;m � 1g � f1; : : : ;m� 1g satisfying (4).HenePr[Ej \ Ej0 ℄ � yj � yj0 � j"mN k � �j"mN k� 1� � 1m � (m� 1) � yj � yj0 � "2N2 : (5)Journal of the ACM, Vol. ?, No. ?, ? 20?.



24 � Byrka et al.By the inlusion-exlusion priniple (see, e.g., Corollary A.2 in [Arora and Barak2009℄), Pr hm�1[j=0 Eji � m�1Xj=0 Pr[Ej ℄� m�1Xj=0 Xj0 6=jPr[Ej \ Ej0 ℄(3)+(5)� m�1Xj=0 "(1� ")yjN � "2N2 m�1Xj=0 yj| {z }=N �Xj0 6=j yj0| {z }�N� "(1� ")� "2 = "(1� 2");whih proves the laim.A deterministi (ln(4) + ")-approximation algorithm easily follows.Proof of Theorem 3. Consider the algorithm from Figure 5 whih imple-ments Step (1b) with the Dependent Phase Sampling. This algorithm anbe derandomized by onsidering all the possible outomes of random variables Aand B in eah phase, whih are at most m2="2 . The laim on the approximationfollows from Lemmas 24, 26, and 27.We an similarly derandomize the result for quasi-bipartite graphs.Theorem 28. For any onstant " > 0, there is a deterministi polynomial-timealgorithm for the Steiner tree problem on quasi-bipartite graphs with approximationratio 7360 + ".Proof. Consider the same algorithm as in Theorem 3. Lemmas 23, 26, and 27still hold. Under the same assumptions as in Lemma 24, and by the di�erent hoieof the witness tree W in this ase, we now haveE[ �D(e)℄ � 1k �Hk�1 � 1� + �1� 1k� �H1 � 1� = �1k �Hk�1 + k � 1k � � 1� � 7360 � 1� :Then the expeted ost of the sampled omponents satis�es E[Ps;i (Cs;i)℄ �7360 �(1+")� � opt. Similarly, the expeted ost of the �nal spanning tree satis�esE[(T )℄ � 2 � 7360 "2� � opt. Altogether, the approximation fator from Lemma 24now redues to 7360 � ( (1+")�� + 2"2� ). The laim follows along the same line as inTheorem 3.7. INTEGRALITY GAPIn this setion we upper bound (Setion 7.1) and lower bound (Setion 7.2) theintegrality gap of DCR. Furthermore, we ompare DCR with BCR (Setion 7.3).7.1 An Upper BoundNote that, despite the fat that our analysis is based on an LP relaxation of theproblem, it does not imply a ln(4) (nor even a 1:5) upper bound on the integralitygap of the studied LP. It only provides a 1 + ln(2) upper bound, as shown inTheorem 13 (by letting " tend to zero). This is beause the LP hanges duringJournal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 25the iterations of the algorithm, and its solution is only bounded with respet to theinitial optimal integral solution. In this setion we prove that our LP has integralitygap at most 1 + ln(3)=2 < 1:55. Before proeeding with our (fairly tehnial)argument, let us remark that, after the onferene version of this paper appeared,a shorter and perhaps more elegant proof (still based on the Bridge Lemma) of thesame laim was reently given in [Chakrabarty et al. 2010b℄.In order to prove the 1:55 upper bound on the integrality gap of DCR, laimedin Theorem 4, we onsider the algorithm R&Z by Robins and Zelikovsky [2005℄.We show that this algorithm produes solutions of ost bounded with respet tothe optimal frational solutions to k-DCR (and hene of DCR). This is ahievedby ombining the original analysis in [Robins and Zelikovsky 2005℄ with our newBridge Lemma 11. This approah was, to some extent, inspired by an argumentin [Charikar and Guha 2005℄ in the ontext of faility loation. We leave it asan interesting open problem to prove a ln(4) (or even 1:5) upper bound on theintegrality gap of DCR (if possible). This might involve the development of afrational version of Lemma 14.Algorithm R&Z works as follows. It onstruts a sequene T 0; T 1; : : : ; T � of ter-minal spanning trees, where T 0 is a minimum-ost terminal spanning tree in theoriginal graph. At iteration t we are given a tree T t and a ost funtion t on theedges of the tree (initially 0 � ). The algorithm onsiders any andidate ompo-nent C with at least 2 and at most k terminals (k-omponent). Let T t[C℄ denotethe minimum spanning tree of the graph T t[C, where the edges e 2 C have weight0 and the edges f 2 T t weight t(f). The subset of edges in T t but not in T t[C℄are denoted by BrT t(C). In fat, BrT t (C) is the set of bridges of T t with respetto R(C) and the above weight funtion. For a given omponent C, we denote asLoss(C) the minimum-ost subforest of C with the property that there is a pathbetween eah Steiner node in C and some terminal in R(C). In the terminologyfrom Setion 3, Loss(C) is the omplement of the set of bridges of the subtree Cafter ontrating R(C). We let loss(C) = (Loss(C)).It is onvenient to de�ne the following quantities:gaint(C) = brT t(C)� (C) and sgaint(C) = gaint(C) + loss(C):The algorithm selets the omponent Ct+1 whih maximizes gaint(C)=loss(C). Ifthis quantity is non-positive, the algorithm halts. Otherwise, it onsiders the graphT t [ Ct+1, and ontrats Loss(Ct+1). The tree T t+1 is a minimum-ost terminalspanning tree in the resulting graph. In ase that parallel edges are reated thisway, the algorithm only keeps the heapest of suh edges. This way we obtain theost funtion t+1 on the edges of T t+1.Lemma 29. [Robins and Zelikovsky 2005℄ For t = 1; 2; : : : ; �, t(T t) = t�1(T t�1)�sgaint�1(Ct):Let Apxk be the approximate solution omputed by the algorithm, and apxk =(Apxk).Lemma 30. [Robins and Zelikovsky 2005℄ For any ` � �,apxk � X̀t=1 loss(Ct) + `(T `):Journal of the ACM, Vol. ?, No. ?, ? 20?.



26 � Byrka et al.Reall that optf;k is the ost of the optimal frational solution to k-DCR. Let (x;C)be an optimal frational solution to k-DCR. De�ne lossf;k :=PC2C xC loss(C).Corollary 31. lossf;k � 12optf;k.Proof. From Lemma 6, for any C 2 C, loss(C) = (C) � brC(R(C)) � 12(C).As a onsequene, lossf;k � 12PC2C xC � (C) = 12optf;k.Corollary 32. �(T �) � optf;k.Proof. Using the fat that gain�(C) = brT�(C)� (C) � 0 for any omponentC, �(T �) Bridge Lem 11� XC2CxCbrT�(C) � XC2CxC(C) = optf;k:By Corollary 32, and sine t(T t) is a non-inreasing funtion of t, there must be avalue of ` � � suh that: `�1(T `�1) > optf;k � `(T `): (6)In the following we will boundPt̀=1 loss(Ct)+`(T `). By Lemma 30, this will givea bound on apxk. Letgaintf := t(T t)� optf;k and sgaintf := gaintf + lossf;k:Lemma 33. For t = 1; 2; : : : ; �, sgaint�1(Ct)loss(Ct) � sgaint�1flossf;k :Proof. We �rst note thatgaint�1flossf;k = t�1(T t�1)�PC2C xC(C)PC2C xC loss(C)Bridge Lem 11� PC2C xC(brT t�1(C) � (C))PC2C xC loss(C)= PC2C xCgaint�1(C)PC2C xC loss(C)� maxC2C�gaint�1(C)loss(C) � � gaint�1(Ct)loss(Ct) ;where in the last inequality we used the fat that Ct maximizes gaint�1(C)=loss(C)over all the k-restrited omponents C. It follows thatsgaint�1(Ct)loss(Ct) = 1 + gaint�1(Ct)loss(Ct) � 1 + gaint�1flossf;k = sgaint�1flossf;k :We need some more notation. Let sgain`�1(C`) = sgain1 + sgain2 suh thatsgain1 = `�1(T `�1)� optf;k (6)> 0: (7)Journal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 27We also let loss(C`) = loss1 + loss2 suh thatsgain`�1(C`)loss(C`) = sgain1loss1 = sgain2loss2 : (8)Eventually, we de�nesgain`1f := sgain`�1f � sgain1(7)= `�1(T `�1)� optf;k + lossf;k � (`�1(T `�1)� optf;k) = lossf;k: (9)Lemma 34. P`�1t=1 loss(Ct) + loss1 � lossf;k ln� sgain0fsgain`1f � :Proof. For every t = 1; 2; : : : ; `� 1,sgaintf = sgaint�1f � sgaint�1(Ct) Lem 33� sgaint�1f �1� loss(Ct)lossf;k � :Furthermore sgain`�1flossf;k Lem 33� sgain`�1(C`)loss(C`) (8)= sgain1loss1 ;from whih sgain`1f = sgain`�1f � sgain1 � sgain`�1f �1� loss1lossf;k� :Then sgain`1fsgain0f � �1� loss1lossf;k� `�1Yt=1�1� loss(Ct)lossf;k � :Taking the logarithm of both sides and realling that x � ln(1 + x),ln sgain0fsgain`1f ! � 1lossf;k  `�1Xt=1 loss(Ct) + loss1! :We now have all the ingredients to bound the approximation fator of the algo-rithm with respet to optf;k. Let mst = (T 0) = 0(T 0). The following theoremand orollary are straightforward adaptations of analogous results in [Robins andZelikovsky 2005℄.Theorem 35. apxk � optf;k + lossf;k ln�mst�optf;k+lossf;klossf;k � :Proof. Sine sgaint�1(Ct) � loss(Ct), it follows from (8) thatsgain2 � loss2: (10)Journal of the ACM, Vol. ?, No. ?, ? 20?.



28 � Byrka et al.Putting everything together we obtainapxk Lem 30� X̀t=1 loss(Ct) + `(T `)Lem 29= `�1Xt=1 loss(Ct) + loss(C`) + `�1(T `�1)� sgain`�1(C`)= `�1Xt=1 loss(Ct) + loss1 + loss2 + `�1(T `�1)� sgain1 � sgain2(10)� `�1Xt=1 loss(Ct) + loss1 + `�1(T `�1)� sgain1(7)= `�1Xt=1 loss(Ct) + loss1 + optf;kLem 34� optf;k + lossf;k ln sgain0fsgain`1f !(9)= optf;k + lossf;k ln�mst� optf;k + lossf;klossf;k � :Lemma 36. For any onstant k � 2, there exists a polynomial-time algorithmfor Steiner tree whih omputes a solution of ost at most 1+ln(3)=2 times the ostof the optimal frational solution to k-DCR.Proof. A straightforward adaptation of Lemma 5 implies thatmst � 2optf;k:Combining the inequality above with Theorem 35, we obtainapxk � optf;k + lossf;k ln�1 + 2optf;k � optf;klossf;k � :The right-hand side of the inequality above is an inreasing funtion of lossf;k. ByCorollary 31, lossf;k � 12optf;k, whih impliesapxk � optf;k + 12optf;k ln�1 + 22optf;k � optf;koptf;k � = optf;k �1 + ln(3)2 � :Theorem 4 follows.Proof of Theorem 4. From Lemma 7, optf;k � �k � optf . The laim followsfrom Lemma 36 and Theorem 1 by hoosing a large-enough k.7.2 A Lower BoundThe best-known lower bound on the integrality gap of BCR (prior to our work) is8=7 [K�onemann et al. 2007℄. We an use the same family of instanes to prove thesame lower bound for DCR.Journal of the ACM, Vol. ?, No. ?, ? 20?.
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r�
0012 0102 0112 1002 1012 1102 1112Fig. 6. Skutella's graph. Nodes are labeled with their indies in binary representation.Theorem 37. The integrality gap of DCR is at least 8=7 > 1:142.Proof. We will use Skutella's graph [K�onemann et al. 2007℄. Consider a SetCover instane with elements U = f1; : : : ; 7g and sets S1; : : : ; S7. Let b(i) be avetor from Z32 that is the binary representation of i, for example b(3) = (0; 1; 1).We de�ne the sets by Sj := fi 2 U j b(i) � b(j) �2 1g. Note that this is exatlythe de�nition of the instane whih yields a 
(logn) lower bound on the integralitygap of Set Cover for n = 7 [Vazirani 2001℄. The ritial property is that for ourpartiular instane one needs 3 sets to over all elements, but hoosing eah set toan extent of 1=4 gives a frational Set Cover solution of ost 7=4.Next we de�ne a graph where eah element forms a terminal and eah set is anon-terminal node onneted to the root and to the ontained elements by unit ostedges (see Figure 6).If we diret all the edges upwards, the graph an be deomposed into 7 edge-disjoint omponents, eah one ontaining one non-terminal node and the 5 edgesinident into it. On one hand installing 1=4 on eah of these omponents gives afrational solution of ost 35=4, while on the other hand at least 3 Steiner nodesmust be inluded for an integer solution. Consequently opt = 10 and we obtain thepromised gap of 1035=4 = 87 .7.3 Comparison with BCRWe start by observing that DCR is a relaxation stritly stronger than BCR.Lemma 38. Let optDCR and optBCR be the optimal frational solutions to DCRand BCR, respetively, for a given input instane. Then optDCR � optBCR andthere are examples where strit inequality holds.Proof. Any feasible solution to DCR an be turned into a feasible solution toBCR of the same ost. In fat, it is suÆient to split eah omponent into theorresponding set of edges. This proves the �rst part of the laim. An example ofstrit inequality is given in Figure 7.Observe that the 1:55 upper bound on the integrality gap of DCR does not implythe same bound on the integrality gap of BCR. It remains as a hallenging openproblem to show whether the integrality gap of BCR is smaller than 2 or not.Journal of the ACM, Vol. ?, No. ?, ? 20?.
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v1 v2 v3

r

t11 t12 t13 t21 t22 t23 t31 t32 t33
s11 s12 s13 s21 s22 s23 s31 s32 s33

Fig. 7. All edges have ost 1. The unique optimal solution to BCR, of ost 15, installs apaity1=4 on the entral edges and apaity 1=2 on the remaining edges (always direted upwards). Theheapest solution to DCR has ost 7=4 � 9 = 15:75. The overall apaity reserved on eah edge isthe same as in the BCR ase, exluding the top edges, where the apaity is 3=4. The (integral)optimal Steiner tree has ost 17.The best-known lower bound on the integrality gap of BCR is 8=7 > 1:142 [K�one-mann et al. 2007; Vazirani 2001℄. In partiular, the family of instanes whih pro-vides this bound is the same as in Setion 7.2. We next present an improved lowerbound of 36=31 on the integrality gap of BCR.Theorem 39. The integrality gap of BCR is at least 36=31 > 1:161.Proof. The basi idea is generalizing the onstrution used in Setion 7.2. Letp 2 N be a parameter. We reate a graph with p + 2 levels and unit ost edges.For i 2 f1; : : : ; pg one has 7i non-terminal nodes on the ith level, eah representedby a vetor from U i, where U = f1; : : : ; 7g. Furthermore we have a root terminalon level 0 and 7p terminals on the (p+ 1)th level, represented by vetors from Up.We onnet the root to all nodes in the �rst level. For i = 1; : : : ; p, onsider nodesu = (u1; : : : ; ui) 2 U i on level i and v = (v1; : : : ; vi+1) 2 U i+1 on level i + 1. Weonnet u and v by an edge if (u1; : : : ; ui�1) = (v1; : : : ; vi�1) and b(ui) � b(vi) �2 1.We onnet the non-terminal node u 2 Up on level p with terminal v 2 Up on levelp+1 in a similar manner, namely if and only if (u1; : : : ; up�1) = (v1; : : : ; vp�1) andb(up) � b(vp) �2 1. Observe that, for p = 1, we obtain exatly Skutella's graph. Thegraph obtained for p = 2 is depited in Figure 8.Let us onsider any integer optimal solution, of ost opt, and diret the edgestowards r�. Eah time we have an edge going from a level i downwards to leveli + 1 we an replae it by an edge to level i � 1 without disonneting the tree.Observe that, for i = 0; : : : ; p� 1, we need at least 3 � 7i edges between level i andi + 1 and that 7p edges are needed between the last two levels. This amount ofJournal of the ACM, Vol. ?, No. ?, ? 20?.
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0123 Fig. 8. Instane for p = 2. Nodes are labeled with the orresponding vetor in abbreviatednotation; all edges have unit osts. The optimal frational solution onsist of installing apaity1=16 on eah edge from level 2 to level 1 and apaity 1=4 otherwise (always direted \upwards"),thus optf = 72+72=4+7=4 = 63. On the other hand for an integer solution one needs 3+3�7+72 =73 edges. The gap for this instane is onsequently 7363 � 1:158.edges is also suÆient, thusopt = 3 � (70 + 71 + : : :+ 7p�1) + 7p = 32 � 7p � 12 :Consider now the optimal frational solution to BCR for the same instane. Letoptpf denote its ost. This solution installs apaity 1=4 on the edges inident to theroot and to the terminals, and apaity 1=16 on the remaining edges (all diretedupwards). Heneoptpf = 447p + 416 � (71 + 72 + : : :+ 7p) = 3124 � 7p � 724 :The laim follows sine limp!1 optoptpf = 3631 :ACKNOWLEDGMENTSThe authors wish to thank C. Chekuri, F. Eisenbrand, M. X. Goemans, J. K�one-mann, D. Prithard, F. B. Shepherd, and R. Zenklusen for helpful disussions. Theseond author is grateful to F. Eisenbrand for supporting his visit at EPFL (duringwhih part of this paper was developed). We thank the anonymous reviewers ofthe onferene version of this paper for many suggestions on how to improve thepresentation. Journal of the ACM, Vol. ?, No. ?, ? 20?.
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