
Steiner Tree Approximation viaIterative Randomized Rounding1JAROS LAW BYRKAEPFL, Lausanne, Switzerland and University of Wro
 law, PolandandFABRIZIO GRANDONIUniversity of Rome Tor Vergata, Roma, ItalyandTHOMAS ROTHVO�EPFL, Lausanne, SwitzerlandandLAURA SANIT�AEPFL, Lausanne, SwitzerlandThe Steiner tree problem is one of the most fundamental NP-hard problems: given a weightedundire
ted graph and a subset of terminal nodes, �nd a minimum-
ost tree spanning the terminals.In a sequen
e of papers, the approximation ratio for this problem was improved from 2 to 1:55[Robins,Zelikovsky-'05℄. All these algorithms are purely 
ombinatorial. A long-standing openproblem is whether there is an LP relaxation of Steiner tree with integrality gap smaller than 2[Vazirani,Rajagopalan-'99℄.In this paper we present an LP-based approximation algorithm for Steiner tree with an im-proved approximation fa
tor. Our algorithm is based on a, seemingly novel, iterative randomizedrounding te
hnique. We 
onsider an LP relaxation of the problem, whi
h is based on the notionof dire
ted 
omponents. We sample one 
omponent with probability proportional to the value ofthe asso
iated variable in a fra
tional solution: the sampled 
omponent is 
ontra
ted and the LPis updated 
onsequently. We iterate this pro
ess until all terminals are 
onne
ted. Our algorithmdelivers a solution of 
ost at most ln(4) + " < 1:39 times the 
ost of an optimal Steiner tree. Thealgorithm 
an be derandomized using the method of limited independen
e.As a byprodu
t of our analysis, we show that the integrality gap of our LP is at most 1:55,hen
e answering to the mentioned open question. This might have 
onsequen
es for a number ofrelated problems.Categories and Subje
t Des
riptors: F.2.2 [Computations on dis
rete stru
tures℄: Non-numeri
al Algorithms and ProblemsGeneral Terms: Algorithms, TheoryAdditional Key Words and Phrases: Approximation algorithms, linear programming relaxations,network design, randomized algorithms1. INTRODUCTIONGiven an undire
ted n-node graph G = (V;E), with edge 
osts (or weights) 
 : E !Q+ , and a subset of nodes R � V (terminals), the Steiner tree problem asks fora tree S spanning the terminals, of minimum 
ost 
(S) := Pe2S 
(e). Note thatS might 
ontain some other nodes, besides the terminals (Steiner nodes). Steiner1A preliminary version of this paper appeared in STOC'10 [Byrka et al. 2010℄.Emails: J. Byrka jby�ii.uni.wro
.pl, F. Grandoni grandoni�disp.uniroma2.it, T. Rothvo�thomas.rothvoss�epfl.
h, L. Sanit�a laura.sanita�epfl.
h.Journal of the ACM, Vol. ?, No. ?, ? 20?, Pages 1{0??.
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2 � Byrka et al.tree is one of the 
lassi
 and, probably, most fundamental problems in ComputerS
ien
e and Operations Resear
h, with great theoreti
al and pra
ti
al relevan
e.This problem emerges in a number of 
ontexts, su
h as the design of VLSI, opti
aland wireless 
ommuni
ation systems, as well as transportation and distributionnetworks (see, e.g., [Hwang et al. 1992℄).The Steiner tree problem appears already in the list of NP-hard problems inthe book by Garey and Johnson [1979℄. In fa
t, it is NP-hard to �nd solutions of
ost less than 9695 times the optimal 
ost [Bern and Plassmann 1989; Chleb��k andChleb��kov�a 2008℄. Hen
e, the best one 
an hope for is an approximation algorithmwith a small but 
onstant approximation guarantee.Without loss of generality, we 
an repla
e the input graph by its metri
 
losure2.A terminal spanning tree is a Steiner tree without Steiner nodes: su
h a tree alwaysexists in the metri
 
losure of the graph. It is well-known that a minimum-
ostterminal spanning tree is a 2-approximation for the Steiner tree problem [Gilbertand Pollak 1968; Vazirani 2001℄.A sequen
e of improved approximation algorithms appeared in the literature[Karpinski and Zelikovsky 1997; Pr�omel and Steger 2000; Zelikovsky 1993℄, 
ulmi-nating with the famous 1 + ln(3)2 + " < 1:55 approximation algorithm by Robinsand Zelikovsky [2005℄. (Here " > 0 is an arbitrarily small 
onstant). All theseimprovements are based on the notion of k-restri
ted Steiner tree, whi
h is de�nedas follows. A 
omponent is a tree whose leaves 
oin
ide with a subset of terminals.A k-restri
ted Steiner tree S is a 
olle
tion of 
omponents, with at most k termi-nals ea
h (k-
omponents), whose union indu
es a Steiner tree. The 
ost of S isthe total 
ost of its 
omponents, 
ounting dupli
ated edges with their multipli
ity(see [Bor
hers and Du 1997℄ for more details). The k-Steiner ratio �k � 1 is thesupremum of the ratio between the 
ost optk of the optimal k-restri
ted Steiner treeand the 
ost opt of the optimal (unrestri
ted) Steiner tree. The following result byBor
hers and Du [1997℄ shows that, in order to have a good approximation, it issuÆ
ient to 
onsider k-restri
ted Steiner trees for a large enough, 
onstant k.Theorem 1. [Bor
hers and Du 1997℄ Let r and s be the non-negative integerssatisfying k = 2r + s and s < 2r. Then�k = (r + 1)2r + sr2r + s � 1 + 1blog2 k
 :The mentioned approximation algorithms exploit the notion of k-
omponentwithin a lo
al-sear
h framework. They start with a minimum-
ost terminal span-ning tree (whi
h is 2-approximate), and iteratively improve it. At ea
h iteration,they add to the 
urrent solution a k-
omponent, 
hosen a

ording to some greedystrategy, and remove redundant edges. The pro
ess is iterated until no furtherimprovement is a
hievable. Di�erent algorithms use di�erent greedy 
riteria.Despite the e�orts of many resear
hers in the last 10 years, the above frameworkdid not provide any further improvement after [Robins and Zelikovsky 2000; 2005℄.This motivated our sear
h for alternative methods. One standard approa
h is to2The metri
 
losure of a weighted graph is a 
omplete weighted graph on the same node set, withweights given by shortest path distan
es with respe
t to original weights.Journal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 3exploit a proper LP relaxation (see, e.g., [Goemans and Myung 1993℄ for a list of LPrelaxations of Steiner tree). A natural formulation for the problem is the undire
ted
ut formulation (see [Goemans and Williamson 1995; Vazirani 2001℄). Here wehave a variable for ea
h edge of the graph and a 
onstraint for ea
h 
ut separatingthe set of terminals. Ea
h 
onstraint for
es to pi
k at least one edge 
rossing the
orresponding 
ut. Considering its LP relaxation, 2-approximation algorithms 
anbe obtained either using primal-dual s
hemes [Goemans and Williamson 1995℄ oriterative rounding [Jain 1998℄. However, this relaxation has an integrality gap of 2already in the spanning tree 
ase, i.e., when R = V (see example 22.10 in [Vazirani2001℄).Another well-studied, but more promising, LP is the bidire
ted 
ut relaxation[Chakrabarty et al. 2008; Edmonds 1967; Rajagopalan and Vazirani 1999℄. Let us�x an arbitrary terminal r (root). Repla
e ea
h edge fu; vg by two dire
ted edges(u; v) and (v; u) of 
ost 
(fu; vg). For a given 
ut U � V , de�ne Æ+(U) = f(u; v) 2E j u 2 U; v =2 Ug as the set of edges leaving U . The mentioned relaxation isminXe2E 
(e)ze (BCR)s:t: Xe2Æ+(U) ze � 1; 8U � V n frg : U \ R 6= ;;ze � 0; 8e 2 E:We 
an 
onsider the value ze as the 
apa
ity whi
h we are going to install on thedire
ted edge e. The LP 
an then be interpreted as 
omputing the minimum-
ost
apa
ities that support a 
ow of 1 from ea
h terminal to the root. In a seminalwork, Edmonds [1967℄ showed that BCR is integral in the spanning tree 
ase.Theorem 2. [Edmonds 1967℄ For R = V , the polyhedron of BCR is integral.The best-known lower bound on the integrality gap of BCR was 8=7 [K�onemannet al. 2007; Vazirani 2001℄. The best-known upper bound is 2, though BCR isbelieved to have a smaller integrality gap than the undire
ted 
ut relaxation [Ra-jagopalan and Vazirani 1999℄. Chakrabarty et al. [2008℄ report that the stru
tureof the dual to BCR is highly asymmetri
, whi
h 
ompli
ates a primal-dual ap-proa
h. Moreover, iterative rounding based on pi
king a single edge 
annot yieldgood approximations, as was pointed out in [Rajagopalan and Vazirani 1999℄.Finding a better-than-2 LP relaxation of the Steiner tree problem is a long-standing open problem [Chakrabarty et al. 2008; Rajagopalan and Vazirani 1999℄.We remark that good LP-bounds, besides potentially leading to better approxima-tion algorithms for Steiner tree, might have a mu
h wider impa
t. This is be
auseSteiner tree appears as a building blo
k in several other problems, and the bestapproximation algorithms for some of those problems are LP-based. Strong LPsare also important in the design of (pra
ti
ally) eÆ
ient and a

urate heuristi
s.1.1 Our Results and Te
hniquesThe main result of this paper is as follows.Theorem 3. For any 
onstant " > 0, there is a polynomial-time (ln(4) + ")-approximation algorithm for the Steiner tree problem.Journal of the ACM, Vol. ?, No. ?, ? 20?.



4 � Byrka et al.
(a) r(b)Fig. 1. (a) A Steiner tree S, where re
tangles denote terminals and 
ir
les represent Steiner nodes.(b) Edges of S are dire
ted towards a root r. The dire
ted 
omponents of S are depi
ted withdi�erent 
olors.This 
an be improved to 73=60+ " in the well-studied spe
ial 
ase of quasi-bipartitegraphs (where non-terminal nodes are pairwise not adja
ent).Our algorithm is based on the following dire
ted-
omponent 
ut relaxation forthe Steiner tree problem (a similar relaxation is 
onsidered in [Polzin and Vahdati-Daneshmand 2003℄). Consider any subset of terminals R0 � R, and any r0 2 R0. LetC be the minimum-
ost Steiner tree on terminals R0, with edges dire
ted towardsr0 (dire
ted 
omponent). For a given dire
ted 
omponent C, we let 
(C) be its
ost, and sink(C) be its unique sink terminal. We 
all the remaining terminalssour
es(C) := V (C) \ R n fsink(C)g. The set of 
omponents obtained this way isdenoted by Cn. We say that a dire
ted 
omponent C 2 Cn 
rosses a set U � R ifC has at least one sour
e in U and the sink outside. By Æ+Cn(U) we denote the setof dire
ted 
omponents 
rossing U . Furthermore, we 
hoose an arbitrary terminalr as a root. Our LP relaxation is then:min XC2Cn 
(C)xC (DCR)s:t: XC2Æ+Cn(U)xC � 1; 8U � R n frg; U 6= ;;xC � 0; 8C 2 Cn:DCR is trivially a relaxation of the Steiner tree problem. In fa
t, one 
an dire
t theedges of the optimal Steiner tree S� towards terminal r, and split the edge set of S�at interior terminals. This yields a set of dire
ted 
omponents C � Cn (see Figure1). Observe that any C 2 C must be an optimal Steiner tree on terminals R\V (C).Consequently, setting xC = 1 for any C 2 C, and the remaining variables to zero,provides a feasible solution to DCR of 
ost PC2C 
(C) = 
(S�) = opt.Unfortunately the 
ardinality of Cn is exponential. However, we will see that, forany 
onstant " > 0, one 
an 
ompute a (1 + ")-approximate fra
tional solution toDCR in polynomial time. This is a
hieved by restri
ting Cn to the dire
ted 
om-ponents Ck that 
ontain at most a (big) 
onstant number k of terminals (dire
tedk-
omponents).We 
ombine our LP with a (to the best of our knowledge) novel iterative random-ized rounding te
hnique. We solve the LP (approximately), sample one 
omponentC with probability proportional to its value xC in the near-optimal fra
tional so-lution x, 
ontra
t C into its sink node sink(C), and reoptimize the LP. We iteratethis pro
ess until only one terminal remains, i.e., until all terminals are 
onne
tedJournal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 5by the sampled 
omponents. A fairly simple analysis provides a 3=2 + " boundon the approximation ratio. With a re�ned analysis, we improve this bound toln(4) + ". Our algorithm 
an be derandomized.We remark that our algorithm 
ombines features of randomized rounding (wheretypi
ally variables are rounded randomly, but simultaneously) and iterative round-ing (where variables are rounded iteratively, but deterministi
ally). We believe thatour iterative randomized rounding te
hnique will also �nd other appli
ations, andis hen
eforth of independent interest.The key insight in our analysis is to quantify the expe
ted redu
tion of the 
ost ofthe optimal Steiner tree in ea
h iteration. To show this, we exploit a novel BridgeLemma, relating the 
ost of terminal spanning trees with the 
ost of fra
tionalsolutions to DCR. The proof of the lemma is based on Theorem 2 [Edmonds 1967℄.In our opinion, our analysis is simpler (or at least more intuitive) than the onein [Robins and Zelikovsky 2005℄.As an easy 
onsequen
e of our analysis, we obtain that the integrality gap of DCRis at most 1 + ln(2) < 1:694, hen
e answering to the mentioned open problem in[Chakrabarty et al. 2008; Rajagopalan and Vazirani 1999℄. Combining our BridgeLemma with the algorithm and analysis by Robins and Zelikovsky [2005℄, we obtainthe following improved result.Theorem 4. For any " > 0, there is an algorithm for the Steiner tree problemwhi
h 
omputes a solution of 
ost at most 1+ ln(3)2 + " times the 
ost of the optimalfra
tional solution to DCR. The running time of the algorithm is polynomial for
onstant ".The above theorem immediately implies a 1 + ln(3)=2 < 1:55 upper bound on theintegrality gap of DCR, by letting " tend to zero (the running time is irrelevantwith that respe
t). As mentioned before, integrality gap results of this type oftenprovide new insights into variants and generalizations of the original problem. Weexpe
t that this will be the 
ase with the above theorem as well, sin
e Steiner treeappears as a building blo
k in many other problems.We also show that the integrality gap of DCR and BCR are at least 8=7 > 1:142and 36=31 > 1:161, respe
tively.1.2 Related WorkA sign of importan
e of the Steiner tree problem is that it appears either as asubproblem or as a spe
ial 
ase of many other problems in network design. A(
ertainly in
omplete) list 
ontains Steiner forest [Agrawal et al. 1995; Goemansand Williamson 1995℄, prize-
olle
ting Steiner tree [Ar
her et al. 2009; Goemansand Williamson 1995℄, virtual private network [Eisenbrand and Grandoni 2005;Eisenbrand et al. 2007; Grandoni and Rothvo� 2010; Gupta et al. 2001; Rothvo�and Sanit�a 2009℄, single-sink rent-or-buy [Eisenbrand et al. 2008; Grandoni andRothvo� 2010; Gupta et al. 2007; Jothi and Raghava
hari 2009℄, 
onne
ted fa
ilitylo
ation [Eisenbrand et al. 2008; Swamy and Kumar 2004℄, and single-sink buy-at-bulk [Grandoni and Italiano 2006; Gupta et al. 2007; Grandoni and Rothvo� 2010;Talwar 2002℄.Both the previously 
ited primal-dual and iterative rounding approximation te
h-niques apply to a more general 
lass of problems. In parti
ular, the iterativeJournal of the ACM, Vol. ?, No. ?, ? 20?.



6 � Byrka et al.rounding te
hnique introdu
ed by Jain [1998℄ provides a 2-approximation for theSteiner network problem, and the primal-dual framework developed by Goemansand Williamson [1995℄ gives the same approximation fa
tor for a large 
lass of
onstrained forest problems.Regarding the integrality gap of LP relaxations of the Steiner tree problem, upperbounds better than 2 are known only for spe
ial graph 
lasses. For example, BCRhas an integrality gap smaller than 2 on quasi-bipartite graphs, where non-terminalnodes indu
e an independent set. For su
h graphs Rajagopalan and Vazirani [1999℄(see also [Rizzi 2003℄) gave an upper bound of 3=2 on the gap. This was re
entlyimproved to 4=3 by Chakrabarty, Devanur and Vazirani [2008℄. Still, for this 
lassof graphs the lower bound of 8=7 holds [K�onemann et al. 2007; Vazirani 2001℄.K�onemann, Prit
hard and Tan [2007℄ showed that for a di�erent LP formulation,whi
h is stronger than BCR, the integrality gap is upper-bounded by 2b+1b+1 , where bis the maximum number of Steiner nodes in full 
omponents. All the mentioned LPs
an be solved in polynomial time, while we solve DCR only approximately: froma te
hni
al point of view, we indeed solve exa
tly a relaxation of the k-restri
tedSteiner tree problem.Finally, we remark that under additional 
onstraints, Steiner tree admits betterapproximations. In parti
ular, a PTAS 
an be obtained by the te
hnique of Arora[1998℄ if the nodes are points in a �xed-dimension Eu
lidean spa
e, and using thealgorithm of Borradaile, Kenyon-Mathieu and Klein [2007℄ for planar graphs.1.3 OrganizationThe rest of this paper is organized as follows. In Se
tion 2 we give some de�nitionsand basi
 results. In Se
tion 3 we show how to approximate DCR and prove ourBridge Lemma. In Se
tion 4 we present a simple expe
ted (1:5+ ")-approximationfor the problem. This result is improved to ln(4) + " in Se
tion 5. The spe
ial
ase of quasi-bipartite graphs is 
onsidered in Se
tion 5.1. We derandomize ouralgorithm in Se
tion 6. Finally, in Se
tion 7 we dis
uss the integrality gap of DCR,and 
ompare DCR with BCR.2. PRELIMINARIESWe use Opt to denote the optimal integral solution, and opt = 
(Opt). The 
ostof an optimal solution to DCR (for the input instan
e) is termed optf . We will
onsider algorithms 
onsisting of a sequen
e of iterations, ea
h one 
onsideringdi�erent subproblems. We will use an apex to denote the 
onsidered iteration t.For example, opttf denotes the 
ost of an optimal fra
tional solution at the beginningof iteration t.For a given (dire
ted or undire
ted) 
omponent C, R(C) := R \ V (C) is theset of its terminals. Re
all that DCR has an exponential number of variables and
onstraints. For this reason, our algorithms will 
onsider approximate solutions toDCR with a polynomial-size support. Therefore, it is notationally 
onvenient torepresent a solution to DCR as a pair (x;C), where C � Cn is a subset of dire
ted
omponents and x = fxCgC2C denotes the values that are asso
iated to ea
h su
h
omponent. (Other variables are assumed to have value zero).Let T be a minimum-
ost terminal spanning tree. It is a well-known fa
t that
(T ) � 2 � opt (see e.g. Theorem 3.3 in [Vazirani 2001℄). Extending the standardJournal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 7proof, this bound also holds w.r.t. our LP relaxation.Lemma 5. One has 
(T ) � 2 � optf .Proof. Let (x;C) be an optimal fra
tional solution to DCR. For ea
h 
omponentC 2 C, obtain an undire
ted TSP tour on R(C) of 
ost at most 2
(C), remove oneedge of the tour, and dire
t the remaining edges towards sink(C). Install 
apa
ityxC 
umulatively on the dire
ted edges of the resulting arbores
en
e. This indu
esa fra
tional solution to DCR of 
ost at most 2 � optf , with the property that only
omponents with 2 terminals and without Steiner nodes are used. This also providesa feasible fra
tional solution to BCR of the same 
ost. Sin
e BCR without Steinernodes is integral by Theorem 2, the 
laim follows.Let R0 be a subset of k terminals. Consider a given Steiner tree S, with edgeweights 
, 
ontaining the terminals R0. The weight fun
tion 
 asso
iated to S, if notspe
i�ed, will be 
lear from the 
ontext. Let us 
ollapse the terminals R0 into onenode, and 
all G0 the resulting (possibly, multi-)graph. Let S0 � S be a minimumspanning tree of G0. Observe that S0 will 
ontain all the edges of S but k � 1edges, sin
e 
ollapsing R0 de
reases the number of nodes in S by k� 1. We 
all thelatter edges the bridges of S w.r.t. R0, and denote them by BrS(R0)3. Intuitively,if we imagine to add zero 
ost dummy edges between the terminals R0, BrS(R0)is a maximum-
ost subset of edges that we 
ould remove from S and still have a
onne
ted spanning subgraph. In other terms,BrS(R0) = argmaxn
(B) j B � S; SnB [ �R02 � 
onne
ts V (S)o:Let us abbreviate brS(R0) := 
(BrS(R0)). For a (dire
ted or undire
ted) 
omponentC 0, we use BrS(C 0) and brS(C 0) as short
uts for BrS(R(C 0)) and brS(R(C 0)),respe
tively.In the analysis, it is often 
onvenient to turn a given Steiner tree S into a rooted,possibly non-
omplete, binary tree as follows (see, e.g., [Karpinski and Zelikovsky1997℄). By adding dummy nodes and dummy edges of 
ost zero, we 
an assumethat the leaves of S 
oin
ide with its terminals, and that internal (Steiner) nodeshave degree exa
tly three. Then we split any edge by adding a dummy node v anda dummy edge of 
ost zero, and we root the tree at v. Note that the resultingrooted binary tree has height at most jRj � 1. Given this redu
tion, it is easy toprove the following standard result.Lemma 6. For any Steiner tree S on terminals R, brS(R) � 12
(S):Proof. Turn S into a rooted binary tree as des
ribed above. For ea
h Steinernode of S, mark the most expensive edge out of the edges going to its 2 
hildren. LetB � S be the set of marked edges. Observe that 
(B) � 12
(S). Furthermore, after
ontra
ting R, one 
an remove B while keeping S 
onne
ted. From the de�nitionof bridges it follows that brS(R) � 
(B) � 12
(S).Throughout this paper, we sometimes identify a subgraph G0 with its set of edgesE(G0).3As usual, we break ties a

ording to edge indexes. Journal of the ACM, Vol. ?, No. ?, ? 20?.



8 � Byrka et al.3. A DIRECTED-COMPONENT CUT RELAXATIONIn this se
tion we show how to solve DCR approximately (Se
tion 3.1), and proveour Bridge Lemma (Se
tion 3.2).3.1 Approximating DCRWe next show how to 
ompute a (1 + ")-approximate solution to DCR, for anygiven 
onstant " > 0, in polynomial time. This is a
hieved in two steps. First ofall, we introdu
e a relaxation k-DCR of the k-restri
ted Steiner tree problem. Thisrelaxation 
an be solved exa
tly in polynomial time for any 
onstant value of theparameter k (Lemma 8). Then we show that the optimal solutions to k-DCR andDCR are 
lose for large-enough k (Lemma 7).Let Ck � Cn denote the set of dire
ted 
omponents with at most k terminals,and let Æ+Ck (U) := Æ+Cn(U) \ Ck. By the same arguments as for the unrestri
ted
ase, the following is a relaxation of the k-restri
ted Steiner tree problem:min XC2Ck 
(C)xC (k-DCR)s:t: XC2Æ+Ck (U) xC � 1; 8U � R n frg; U 6= ;;xC � 0; 8C 2 Ck:Let optf;k be the value of the optimal fra
tional solution to k-DCR. Trivially,optf;k � optf sin
e any feasible solution to k-DCR is also feasible for DCR. We 
anexploit the result by Bor
hers and Du [1997℄ to show that optf;k is indeed 
lose tooptf for large k.Lemma 7. One has optf;k � �k � optf .Proof. Let (x;C) be an optimal fra
tional solution for DCR. We show how to
onstru
t a solution (x0;C0) to k-DCR with the 
laimed property. For any 
ompo-nent C 2 C, we 
an apply Theorem 1 to obtain a list of undire
ted 
omponentsC1; : : : ; C` su
h that: (a) Sì=1 Ci 
onne
ts the terminals in C, (b) any Ci 
ontainsat most k terminals, and (
) Pì=1 
(Ci) � �k � 
(C). Next, we dire
t the edges ofall Ci's 
onsistently towards sink(C) and in
rease the value of x0Ci by xC for ea
hCi. The resulting solution (x0;C0) satis�es the 
laim.It remains to solve k-DCR for k = O(1). For any �xed k, in polynomial time one
an 
onsider any subset R0 � R of at most k terminals, and 
ompute an optimalSteiner tree Z on R04. By 
onsidering ea
h r0 2 R0, and dire
ting the edges of Ztowards r0, one obtains all the dire
ted 
omponents on terminals R0. Consequently,jCkj = O(knk) and the k-
omponents 
an be listed in polynomial time.Lemma 8. The optimal solution to k-DCR 
an be 
omputed in polynomial timefor any 
onstant k.4We re
all that, given k terminals, the dynami
-programming algorithm by Dreyfus and Wagner[1972℄ 
omputes an optimal Steiner tree among them in O(3kn+ 2kn2 + n3) worst-
ase time. Afaster parameterized algorithm 
an be found in [M�olle et al. 2006℄.Journal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 9Proof. We de�ne a dire
ted auxiliary graph G0 = (V 0; E0), on node set V 0 =R [ fvC j C 2 Ckg. For every 
omponent C, insert edges (u; vC) for any u 2sour
es(C), and one edge eC = (vC ; sink(C)). We observe that k-DCR is equivalentto a non-simultaneous multi
ommodity 
ow problem, where any terminal in R sendsone unit of 
ow to the root and edges eC have 
ost 
(C).More pre
isely k-DCR is equivalent to the following 
ompa
t LP:min XC2Ck 
(C)xCs:t: Xe2Æ+(v) fs(e)� Xe2Æ�(v) fs(e) = 8><>:1 if v = s;�1 if v = r;0 if v 2 V n fr; sg; 8s 2 R n frg;fs(eC) � xC ; 8s 2 R n frg; C 2 Ck;fs(e); xC � 0; 8s 2 R n frg; e 2 E0; C 2 Ck:Here fs(e) denotes the 
ow that terminal s sends a
ross edge e and the 
apa
ity onedge eC is xC = maxs2Rnfrg fs(eC). An optimal solution of the latter LP 
an be
omputed in polynomial time, see e.g. [Kha
hiyan 1979; Gr�ots
hel et al. 1981℄5.Putting everything together, we obtain the desired approximate solution to DCR.Lemma 9. For any �xed " > 0, a (1 + ")-approximate solution (x;C) to DCR
an be 
omputed in polynomial time.Proof. It is suÆ
ient to solve k-DCR for k := 2d1="e with the algorithm fromLemma 8. Observe that �k � 1+ " (see again Theorem 1). The 
laim follows fromLemma 7.3.2 The Bridge LemmaWe next prove our Bridge Lemma, whi
h is the heart of our analysis. This lemmarelates the 
ost of any terminal spanning tree to the 
ost of any fra
tional solutionto DCR via the notion of bridges, and its proof is based on Edmonds' Theorem 2.A key ingredient in the proof of our lemma is the 
onstru
tion of a proper weightedterminal spanning tree Y . Consider a Steiner tree S on terminals R. We de�ne abridge weight fun
tion w : R�R! Q+ as follows: For any terminal pair u; v 2 R,the quantity w(u; v) is the maximum 
ost of any edge in the unique u-v path inS. Re
all that BrS(R0) is the set of bridges of S with respe
t to terminals R0, andbrS(R0) denotes its 
ost.Lemma 10. Let S be any Steiner tree on terminals R, and w : R �R ! Q+ bethe asso
iated bridge weight fun
tion. For any subset R0 � R of terminals, there isa tree Y � R0 �R0 su
h that(a) Y spans R0.(b) w(Y ) = brS(R0).(
) For any fu; vg 2 Y , the u-v path in S 
ontains exa
tly one edge from BrS(R0).5Note that this LP 
an even be solved in strongly-polynomial time using the Frank-Tardos algo-rithm [Frank and Tardos 1987℄ Journal of the ACM, Vol. ?, No. ?, ? 20?.
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Fig. 2. Steiner tree S is drawn in bla
k. Terminals of R0 are gray shaded. Bold bla
k edgesindi
ate BrS(R0) = fb1; : : : ; b4g. The 
orresponding edges e1; : : : ; e4 of Y are drawn in gray andlabeled with w(ei). Note that w(ei) = 
(bi). Observe also that b3 is the unique bridge on the
y
le 
ontained in S [ fe3g.Proof. Let BrS(R0) = fb1; b2; : : : ; bk�1g be the set of bridges. Observe thatS n BrS(R0) is a forest of trees F1; : : : ; Fk, where ea
h Fi 
ontains exa
tly oneterminal ri 2 R0. Ea
h bridge bi 
onne
ts exa
tly two trees Fi0 and Fi00 . For ea
hbi, we add edge ei = fri0 ; ri00g to Y . Observe that Y 
ontains k nodes and k � 1edges. Assume by 
ontradi
tion that Y 
ontains a 
y
le, say e1; e2; : : : ; eg . Repla
eea
h ei = fri0 ; ri00g with Fi0 [ Fi00 [ fbig: the resulting graph is a 
y
li
 subgraphof S, a 
ontradi
tion. Hen
e Y is a spanning tree on R0.The path Pi between ri0 and ri00 
ontains bi and no other bridge. Hen
e bi is amaximum-
ost edge on Pi, and w(ei) = 
(bi) (see Figure 2). The 
laim follows.Lemma 11. [Bridge Lemma℄ Let T be a terminal spanning tree and (x;C) be afeasible solution to DCR. Then
(T ) � XC2CxC � brT (C):Proof. For every 
omponent C 2 C, we 
onstru
t a spanning tree YC on R(C)with weight w(YC) = brT (C) a

ording to Lemma 10. Then we dire
t the edgesof YC towards sink(C). Let us install 
umulatively 
apa
ity xC on the (dire
ted)edges of YC , for ea
h C 2 C. This way we obtain a dire
ted 
apa
ity reservationy : R � R ! Q+ , with y(u; v) := PYC3(u;v) xC . The dire
ted tree YC supportsat least the same 
ow as 
omponent C with respe
t to R(C). It then follows thaty supports one unit of 
ow from ea
h terminal to the root. In other terms, y isa feasible fra
tional solution to BCR. By Edmond's Theorem 2, BCR is integralwhen no Steiner node is used. As a 
onsequen
e there is an (integral) terminalspanning tree F that is not more 
ostly than the fra
tional solution y, i.e., w(F ) �Pe2R�R w(e)y(e).Re
all that w(u; v), for u; v 2 R, is the maximum 
ost of any edge of the unique
y
le in T [fu; vg. It follows from the 
lassi
 
y
le rule for minimum spanning tree
omputation that w(F ) � 
(T ) (see, e.g., Theorem 6.2 in [Korte and Vygen 2002℄).Journal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 11(1) For t = 1; 2; : : :(1a) Compute a (1+ "2 )-approximate solution (xt;Ct) to DCR (w.r.t. the 
urrent instan
e).(1b) Sample one 
omponent Ct, where Ct = C with probability xtC=PC02Ct xtC0 . Contra
tCt into its sink.(1
) If a single terminal remains, return Sti=1 Ci.Fig. 3. A (ln(4) + ")-approximation algorithm for Steiner tree.AltogetherXC2CxCbrT (C) = XC2CxCw(YC) = Xe2R�Rw(e)y(e) � w(F ) � 
(T ):4. ITERATIVE RANDOMIZED ROUNDINGIn this se
tion we present our approximation algorithm for Steiner tree. To highlightthe novel ideas of the approximation te
hnique more than the approximation fa
toritself, we present a simpli�ed analysis providing a weaker 3=2 + " approximationfa
tor (whi
h is already an improvement on the previous best 1:55 approximation).The more 
omplex analysis leading to ln(4) + " is postponed to Se
tion 5.The approximation algorithm for Steiner tree is des
ribed in Figure 3. In Step(1a) we use the algorithm from Lemma 9. Re
all that the 
ardinality of Ct isupperbounded by a valueM whi
h, for any �xed " > 0, is bounded by a polynomialin n. Contra
ting a 
omponent Ct means 
ollapsing all its terminals into its sinksink(Ct), whi
h inherits all the edges in
ident to Ct (in 
ase of parallel edges, weonly keep the 
heapest one). We let Optt denote the optimal Steiner tree at thebeginning of iteration t, and let optt be its 
ost. By opttf we denote the 
ost of theoptimal fra
tional solution at the beginning of iteration t.Observe that PC2Ct xtC � M , and this quantity might vary over the iterationst. In order to simplify the analysis, we add a dummy 
omponent �C formed by theroot only (hen
e of 
ost zero) to ensure that in fa
tXC2Ct xtC =M; 8t � 1:Note that adding su
h dummy 
omponent 
orresponds to inserting idle iterationsinto the algorithm. But the expe
ted 
ost of the produ
ed solution remains thesame.The expe
ted 
ost of the produ
ed solution is:Xt�1 E[
(Ct)℄ �Xt�1 XC2CtEhxtCM 
(C)i � 1 + "2M Xt�1E[opttf ℄ � 1 + "2M Xt�1 E[optt℄ (1)Thus, in order to obtain a good approximation guarantee, it suÆ
es to provide agood bound on E[optt℄.4.1 A �rst boundA simple 
onsequen
e of the Bridge Lemma is that the 
ost of the minimum terminalspanning tree de
reases by a fa
tor (1 � 1M ) per iteration in expe
tation. Thisimplies an upper bound on opttf via Lemma 5 (while later bounds will hold for opttonly). The bound on opttf implies the �rst non-trivial bounds on the approximationJournal of the ACM, Vol. ?, No. ?, ? 20?.



12 � Byrka et al.guarantee of our algorithm (due to the fa
t that opttf � optt) and on the integralitygap of our LP.Lemma 12. One has E[opttf ℄ � �1� 1M �t�1 � 2optf .Proof. Let T t be the minimum-
ost terminal spanning tree at the beginning ofiteration t. By Lemma 5, 
(T 1) � 2optf . For any iteration t > 1, the redu
tion inthe 
ost of T t w.r.t. T t�1 is at least brT t�1(Ct). Therefore:E[
(T t)℄ � 
(T t�1)�E[brT t�1(Ct�1)℄= 
(T t�1)� 1M XC2Ct�1 xt�1C � brT t�1(C)Bridge Lem 11� �1� 1M� � 
(T t�1):By indu
tion E[opttf ℄ � E[
(T t)℄ � �1� 1M �t�1 � 2optf :Observe that the bound from Lemma 12 improves over the trivial bound opttf �optf for t > M � ln(2). Nevertheless it suÆ
es to prove the following result.Theorem 13. For any �xed " > 0, there is a randomized polynomial-time al-gorithm whi
h 
omputes a solution to the Steiner tree problem of expe
ted 
ost atmost (1 + ln(2) + ") � optf .Proof. Assume without loss of generality that M � ln(2) is integral. Combin-ing (1) with Lemma 12, the expe
ted approximation fa
tor isE "Pt�1 
(Ct)optf # � 1 + "=2M Xt�1 E "opttfoptf #� 1 + "=2M Xt�1min(1; 2�1� 1M�t�1)� 1 + "=2M 0�M � ln(2) + Xt�M �ln(2)+1 2�1� 1M�t�11A� �1 + "2� ln(2) + 2�1� 1M�M �ln(2)!� �1 + "2��ln(2) + 2e� ln(2)� � 1 + ln(2) + ":Above we used the equation Pt�t0 xt = xt01�x for 0 < x < 1 and the inequality(1� 1=x)x � 1=e for x � 1.Observe that Theorem 13 implies that the integrality gap of DCR is at most 1+ln(2).In Se
tion 7 we will re�ne this bound on the gap to 1 + ln(3)=2.Journal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 134.2 A se
ond boundIn order to further improve the approximation guarantee we show that, in ea
hiteration, the 
ost optt of the optimal (integral) Steiner tree of the 
urrent instan
ede
reases by a fa
tor (1 � 12M ) in expe
tation. We remark that it is not knownwhether this bound holds also for opttf . Also in this 
ase the proof relies 
ru
iallyon the Bridge Lemma.Lemma 14. Let S be any Steiner tree and (x;C) be a feasible solution to DCR.Sample a 
omponent C 2 C su
h that C = C 0 with probability xC0=M . Then thereis a subgraph S0 � S su
h that S0 [ C spans R andE[
(S0)℄ � �1� 12M� � 
(S):Proof. It suÆ
es to prove that E[brS(C)℄ � 12M 
(S). Turn S into a rootedbinary tree with the usual pro
edure. Then, for any Steiner node in S, 
hoose the
heapest edge going to one of its 
hildren. The set H � S of su
h sele
ted edgeshas 
ost 
(H) � 12
(S). Furthermore any Steiner node is 
onne
ted to one terminalusing edges of H . Consider the terminal spanning tree T that emerges from S by
ontra
ting H . By the Bridge Lemma 11,E[brT (C)℄ = 1M XC02CxC0 � brT (C 0) � 1M 
(T ):Observe also that BrT (C) is a feasible set of bridges for S with respe
t to C, andthus brS(C) � brT (C). Altogether:E[brS(C)℄ � E[brT (C)℄ � 1M 
(T ) = 1M (
(S)� 
(H)) � 12M 
(S):Iterating Lemma 14 yields the following 
orollary.Corollary 15. For every t � 1,E[optt℄ � �1� 12M�t�1 � opt:We now have all the ingredients to show a (3=2 + ")-approximation fa
tor.Theorem 16. For any " > 0, there is a polynomial-time randomized approxi-mation algorithm for Steiner tree with expe
ted approximation ratio 3=2 + ".Proof. Assume without loss of generality that M � ln(4) is integral. CombiningJournal of the ACM, Vol. ?, No. ?, ? 20?.



14 � Byrka et al.(1) with Lemma 12 and Corollary 15, the expe
ted approximation fa
tor is:E "Pt�1 
(Ct)opt # � 1 + "=2M Xt�1 E �opttopt �� 1 + "=2M Xt�1min(2�1� 1M�t�1 ; �1� 12M�t�1)� 1 + "=2M 0�M �ln(4)Xt=1 �1� 12M�t�1 + Xt�M �ln(4)+1 2�1� 1M�t�11A= �1 + "2� � 2� 2 � �1� 12M�M �ln(4) + 2�1� 1M�M �ln(4)!� �1 + "2� � �2� 2 � e� ln(4)=2 + 2e� ln(4)� � 3=2 + ":Above we exploited the equation Pt0t=1 xt�1 = 1�xt01�x for 0 < x < 1. We also usedthe fa
t that (1 � 1y )ln(4)y � (1 � 12y )ln(4)y is an in
reasing fun
tion of y > 1, andthat limy!1(1� 1y )y = 1e .5. A REFINED ANALYSISIn this se
tion we present a re�ned (ln(4)+ ") approximation bound for our Steinertree algorithm.We �rst give a high-level des
ription of our analysis. Let S� := Opt be theoptimal Steiner tree for the original instan
e (in parti
ular, 
(S�) = opt). Ea
htime we sample a 
omponent Ct, we will delete a proper subset of edges fromS�. Consider the sequen
e S� = S1 � S2 � : : : of subgraphs of S� whi
h areobtained this way. We will guarantee that at any iteration t, the edge set St plusthe previously sampled 
omponents yields a subgraph that 
onne
ts all terminals.Furthermore, we will prove that a �xed edge e 2 S� is deleted after an expe
tednumber of at most ln(4) �M iterations. This immediately implies the approximationfa
tor of ln(4) + ".In order to tra
k whi
h edges 
an be safely deleted from S�, we will 
onstru
t anarti�
ial terminal spanning tree W (the witness tree) and assign a random subsetW (e) of edges of W to ea
h edge e 2 S� (the witnesses of e). At ea
h iteration,when 
omponent Ct is sampled, we mark a proper random subset BrW (Ct) ofedges of W . As soon as all the edges of W (e) are marked, edge e is deleted fromS�. Summarizing, we 
onsider the following random pro
ess:For t = 1; 2; : : :, sample one 
omponent Ct from (xt;Ct) and mark theedges in BrW (Ct). Delete an edge e from S� as soon as all edges inW (e) are marked.The subgraph St is formed by the edges of S� whi
h are not yet deleted at thebeginning of iteration t.The 
hoi
e of BrW (Ct) guarantees that, deterministi
ally, the unmarked edgesW 0 plus the sampled 
omponents 
onne
t all the terminals. The 
hoi
e of W (e)Journal of the ACM, Vol. ?, No. ?, ? 20?.
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3 1 1 2 1 3 1 22e0 1 2 11 1

f0 f1 (a) (b)Fig. 4. (a) Optimal Steiner tree S� in bla
k, where bold edges indi
ate the 
hosen edges ~B, and theasso
iated terminal spanning tree W in gray. Edges e in S� are labeled with jW (e)j. For exampleW (e0) = ff0; f1g. (b) Marked edges inW at a given iteration t are drawn dotted; the non-deletededges in S� (i.e., edges of St) are drawn in bla
k. Non-marked edges of W and non-deleted edgesof S� support the same 
onne
tivity on R.ensures that, deterministi
ally, if W 0 plus the sampled 
omponents 
onne
t allthe terminals, then the sampled 
omponents plus the undeleted edges St = fe 2S� j W (e) \W 0 6= ;g do the same. Hen
e the St's have the 
laimed 
onne
tivityproperties. The analysis then redu
es to show that all the edges inW (e) are markedwithin a small enough number of iterations (in expe
tation).We next de�ne W , W (�), and BrW (�). Turn S� into a rooted binary tree withthe usual pro
edure. Re
all that the height of the binary tree is at most jRj � 1.For ea
h Steiner node, 
hoose uniformly at random one of the two edges to its
hildren. Let ~B denote the 
hosen edges. Clearly Pr[e 2 ~B℄ = 12 for any e 2 S�.Let Puv � S� be the unique u-v path in S�. The witness tree isW := nfu; vg 2 �R2� j jPuv \ ~Bj = 1o :Similarly to arguments in Lemma 10, W is a terminal spanning tree. For ea
h edgee 2 S�, de�ne W (e) := ffu; vg 2 W j e 2 Puvg:See Figure 4(a) for an illustration. As we will see, W (e) is small in expe
tation. Itremains to de�ne BrW (�). For a given 
omponent C 2 C, let the set of 
andidatebridges BW (C) beBW (C) := fB �W j jBj = jR(C)j � 1; (WnB) [ C 
onne
ts V (W )g:Intuitively, BW (C) is the family of bridge sets of W with respe
t to C that oneobtains for varying 
ost fun
tions. The set BrW (Ct) is 
hosen randomly in BW (C),a

ording to a proper probability distribution wC : BW (C) ! [0; 1℄, whi
h will bedes
ribed in the following. Observe that BrW (C) 2 BW (C). The intuitive reasonfor using a random element of BW (C) rather than BrW (C) is that we wish to markthe edges of W in a more uniform way. This, in 
ombination with the small size ofW (e), guarantees that edges are deleted qui
kly enough.Next lemma shows that the undeleted edges plus the sampled 
omponents 
onne
tthe terminals. Journal of the ACM, Vol. ?, No. ?, ? 20?.



16 � Byrka et al.Lemma 17. The graph St [St�1t0=1 Ct0 spans R.Proof. Let W 0 � W be the set of edges whi
h are not yet marked at thebeginning of iteration t (see also Figure 4(b)). By the de�nition of BW (C) andbeing BrW (C) 2 BW (C), W 0 [St�1t0=1 Ct0 spans R. Consider any edge fu; vg 2 W 0.Then fu; vg 2 W (e) for all e 2 Puv . Hen
e no edge on Puv is deleted. Therefore uand v are also 
onne
ted in St. The 
laim follows.Note that 1 � jW (e)j � jRj � 1. Observe also that jW (e)j = 1 if e 2 ~B. Indeed,the expe
ted 
ardinality of W (e) is small also for the remaining edges.Lemma 18. For any edge e 2 S� at level ke � jRj� 1 (edges in
ident to the rootare at level one), one hasPr[jW (e)j = q℄ = 8><>:1=2q if 1 � q < ke;2=2q if q = ke;0 otherwise:Proof. Consider the path v0; v1; : : : ; vke from e towards the root. In parti
ular,e = fv0; v1g. If (vq�1; vq) is the �rst edge from ~B on this path, then jW (e)j = q.This is be
ause, for ea
h node vj , j � 1, there is one distin
t path Puv with fu; vg 2W that 
ontains e (see also Figure 4(a)). This event happens with probability 1=2q.If there is no edge from ~B on the path v0; v1; : : : ; vke , jW (e)j = ke by a similarargument. The latter event happens with probability 1=2ke . The 
laim follows.Next lemma proves the existen
e of random variables BrW (�) su
h that ea
h edgeof W is marked at ea
h iteration with probability at least 1=M . Its proof is basedon a 
ombination of Farkas' Lemma with our Bridge Lemma.Lemma 19. There is a 
hoi
e of the random variables BrW (�) su
h that ea
hedge e 2W is marked with probability at least 1=M at ea
h iteration.Proof. Consider any given iteration. Let (x;C) be the 
orresponding solution toDCR, and C� be the sampled 
omponent in that iteration. In parti
ular, C� = Cwith probability xC=M = xC=PC02C xC0 . In this iteration we mark the edgesBrW (C�), where Pr[BrW (C�) = B℄ = wC�(B) for any B 2 BW (C�). We will showthat there is a 
hoi
e of the wC 's, C 2 C, su
h thatX(C;B):B2BW (C);e2B xC � wC(B) � 1; 8e 2W:This implies the 
laim sin
ePr[e 2 BrW (C�)℄ = X(C;B):B2BW (C);e2B xCM � wC(B) � 1M :Suppose by 
ontradi
tion that su
h probability distributions wC do not exist.Journal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 17Then the following linear system has no solution6:XB2BW (C)wC(B) � 1; 8C 2 C;X(C;B):B2BW (C);e2B xC � wC(B) � 1; 8e 2W ;wC(B) � 0; 8C 2 C; 8B 2 BW (C):Farkas' Lemma7 yields that there is a ve
tor (y; 
) � 0 with(a) yC �Pe2B 
exC ; 8C 2 C; 8B 2 BW (C);(b) PC2C yC <Pe2W 
e:Let us interpret 
 as an edge 
ost fun
tion. In parti
ular, 
(W ) := Pe2W 
e andbrW (C) is the 
ost of the bridges of W with respe
t to 
omponent C and this 
ostfun
tion. One hasyC (a)� xC �maxf
(B) j B 2 BW (C)g = xC � brW (C):Then XC2CxC � brW (C) � XC2C yC (b)< Xe2W 
e = 
(W );whi
h 
ontradi
ts the Bridge Lemma 11.We next show that, for small jW (e)j, all the edges of W (e) are marked (andhen
e e is deleted) within a small number of iterations. A handwaving argumentworks as follows. Let jW (e)j = q. Similarly to the Coupons Colle
tor problem (seee.g. [Mitzenma
her and Upfal 2005℄), it takes in expe
tation Mq iterations until the�rst edge is marked, then Mq�1 iterations to hit the se
ond one and so forth. Finallyall edges are marked after an expe
ted number of M � ( 1q + 1q�1 + : : :+1) = Hq �Miterations. (Here Hq :=Pqi=1 1i denotes the q-th harmoni
 number). However, thisargument does not re
e
t the fa
t that a set BrW (Ct) might 
ontain several edgesfrom W (e). A more 
areful argument in
orporates this 
ompli
ation.For ~W � W , let X( ~W ) denote the �rst iteration when all the edge in ~W aremarked. Observe that St = fe 2 S� j X(W (e)) � tg.Lemma 20. Let ~W �W . Then the expe
ted number of iterations until all edgesin ~W are marked satis�es E[X( ~W )℄ � Hj ~W j �M:Proof. Let q = j ~W j. By mq we denote the best possible upper bound on theexpe
ted number of iterations until all edges of ~W are marked (over all feasibleprobability distributions). We will prove that mq � Hq �M by indu
tion on q.6We 
an repla
e the \=" 
onstraint with \�" without a�e
ting feasibility sin
e all 
oeÆ
ients ofwC(B) are non-negative.79x � 0 : Ax � b __ 9z � 0 : zTA � 0; zT b < 0. Journal of the ACM, Vol. ?, No. ?, ? 20?.



18 � Byrka et al.For q = 1, the only edge in ~W is marked with probability at least 1M at ea
hiteration, hen
e m1 �M . Next, let q > 1 and 
onsider the �rst iteration. Supposethat �i is the probability that at least i many edges are marked in this iteration.Sin
e the expe
ted number of marked edges must be at least q � 1M in the �rstiteration, this distribution has to satisfy Pqi=1 �i � qM . Note that �0 = 1 and�q+1 = 0. For notational 
onvenien
e, let m0 := 0.If we 
ondition on the event that i 2 f0; : : : ; qg edges are marked in the �rstiteration, we need in expe
tation at most mq�i more iterations until the remainingq � i edges are marked. Hen
e we obtain the following bound:mq � 1 + qXi=0 Pr �exa
tly i edges markedat the �rst iteration � �mq�iindu
tivehypothesis� 1 +M � qXi=1(�i � �i+1)Hq�i + (1� �1)mq= 1 +M � qXi=1 �i � (Hq�i �Hq�i+1)| {z }��1=q +�1HqM + (1� �1)mq� 1� 1qM � qXi=1 �i| {z }�q=M +�1HqM + (1� �1)mq� �1HqM + (1� �1)mq :From �1 > 0 we obtain mq � Hq �M . The 
laim follows.Now we have all the ingredients to prove the expe
ted (ln(4)+ ") approximationfa
tor.Theorem 21. For any 
onstant " > 0, there is a polynomial-time randomizedapproximation algorithm for the Steiner tree problem with expe
ted approximationratio ln(4) + ".Proof. For an edge e 2 S�, we de�ne D(e) = maxft j e 2 Stg as the iterationJournal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 19in whi
h e is deleted. One hasE[D(e)℄ = keXq=1Pr[jW (e)j = q℄ �E[D(e) j jW (e)j = q℄Lem 20� keXq=1Pr[jW (e)j = q℄ �Hq �MLem 18= ke�1Xq=1 �12�q �Hq �M + 22ke �Hke �M� Xq�1 �12�q �Hq �M= M �Xq�1 1qXi�0 �12�q+i= M �Xq�1 1q�12�q�1 = ln(4) �M:The expe
ted 
ost of the approximate solution satis�esEhXt�1 
(Ct)i �Xt�1 1 + "=2M E�opttf �� 1 + "=2M Xt�1 E �
(St)�= 1 + "=2M Xe2S�E[D(e)℄ � 
(e) � (ln(4) + ") � opt:The 
laim follows.5.1 A ( 7360 + ")-Approximation for Quasi-Bipartite GraphsIn this se
tion we 
onsider the spe
ial 
ase of quasi-bipartite graphs. Re
all that we
all a graph G = (V;E) quasi-bipartite if no pair of non-terminal nodes u; v 2 V nRis 
onne
ted by an edge. We show that our algorithm has an approximation ratioof at most 7360 + " < 1:217 (for " small enough). This improves over the previouslybest known fa
tor of 1.28 in [Robins and Zelikovsky 2005℄. Note that Gr�opl et al.[2002℄ show the bound of 7360 for the more restri
ted 
ase of uniform quasi-bipartitegraphs, where all edges in
ident to a non-terminal node have the same 
ost. Forthis 
lass the integrality gap of the hypergraphi
 LP relaxation by Chakrabartyet al. [2010a℄ 
an also be bounded by 7360 .Again let S� be an optimal Steiner tree, whi
h now is quasi-bipartite. LetZ1; : : : ; Z` be its (undire
ted) 
omponents. In parti
ular, ea
h Zi is a star witha single Steiner node as 
enter and terminals as leaves. We 
an improve the ap-proximation guarantee by 
hoosing the witness tree W in a more e
onomi
al way,exploiting the stru
ture of S�. For ea
h i = 1; : : : ; `, we add to the 
hosen edges ~Ball the edges of Zi but one edge 
hosen uniformly at random. Again for u; v 2 R,Journal of the ACM, Vol. ?, No. ?, ? 20?.



20 � Byrka et al.let Puv be the unique u-v path in S�. We letW := ffu; vg 2 �R2� j jPuv \ ~Bj = 1g:Observe that W will in fa
t be a terminal spanning tree. The analysis is now mu
hsimpler.Theorem 22. For any 
onstant " > 0, there is a polynomial-time randomizedapproximation algorithm for the Steiner tree problem on quasi-bipartite graphs withexpe
ted approximation ratio 7360 + ".Proof. We still 
onsider the algorithm in Figure 3. For an edge e 2 S�, wede�ne D(e) = maxft j e 2 Stg as the iteration in whi
h e is deleted. Let k be thenumber of terminals in the star Zi that 
ontains e. With probability 1k one hasjW (e)j = k � 1, and otherwise jW (e)j = 1. Hen
e, by Lemma 20,E[D(e)℄ � 1k �Hk�1 �M + �1� 1k� �H1 �M = �1k �Hk�1 + k � 1k � �M � 7360 �M:In the last inequality we used the fa
t that 1k �Hk�1 + k�1k is maximized for k = 5.The 
laim follows along the same line as in Theorem 21.6. DERANDOMIZATIONIn this se
tion, we show how to derandomize the result from Se
tion 5 using themethod of limited independen
e (see, e.g., [Alon and Spen
er 2008℄). This way, weprove Theorem 3.We start (Se
tion 6.1) by presenting an alternative, phase-based algorithm, whi
hupdates the LP only a 
onstant number of times (the phases). Then we show(Se
tion 6.2) how to sample 
omponents in ea
h phase with a logarithmi
 numberof random bits.6.1 A Phase-Based Randomized AlgorithmConsider the algorithm from Figure 5. The basi
 idea behind the algorithm isgrouping iterations into phases. In ea
h phase, we keep the LP un
hanged. Thedetails on how to sample 
omponents in ea
h phase are given later.(1) For phase s = 1; 2; : : : ; 1="2(1a) Compute a (1 + ")-approximate well-rounded solution (xs;Cs) to DCR (w.r.t. the
urrent instan
e).(1b) Sample �s 
omponents Cs;1; : : : ; Cs;�s from Cs a

ording to xs, and 
ontra
t them.(2) Compute a minimum-
ost terminal spanning tree T in the remaining instan
e.(3) Output T [ S1="2s=1 S�si=1 Cs;i.Fig. 5. Phase-based sampling algorithmWe may assume that the 
omputed DCR solution (xs;Cs) is well-rounded, i.e.,� jCsj = m for a prime number m,� xsC = 1N for all C 2 Cs and N � 1 is bounded by a polynomial in n.Journal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 21This 
an be a
hieved as follows: One 
omputes a (1 + "2 )-approximate solution(x;C). Say h = jCj. Then we round up all entries in x to the nearest multiple of1N for N := 8h=" and term the obtained solution x0. Using the generous estimate
(C) � 2optf (following from Lemma 5) we obtain, for " � 1,XC2Cx0C � 
(C) � �1 + "2� � �optf + XC2C "8h
(C)� � (1 + ")optf :Next, repla
e a 
omponent C by x0C � N many 
opies. Let m0 be the number ofobtained 
omponents (
ounted with multipli
ities). Then we 
an 
ompute a primenumber m 2 [m0; 2m0℄ (see e.g. [Niven et al. 1991℄) and add m � m0 dummy
omponents C 
ontaining only the root, ea
h one with x0C := 1N . This yields afeasible well-rounded solution as desired. We furthermore assume8 that m � N="2and 1=" is integer.For ~W � W , let �X( ~W ) denote the �rst phase when all edges in ~W are marked.Analogously, �D(e) is the phase when all the edges in W (e) are marked. For nota-tional 
onvenien
e, we interpret Step (2) as a �nal phase when all the edges of Ware marked (so that �X( ~W ) and �D(e) are well de�ned). The next lemma is a simpleadaptation of Lemma 20.Lemma 23. Let ~W �W . Suppose ea
h edge is marked at ea
h phase with prob-ability at least p 2℄0; 1℄. Then the expe
ted number of phases until all edges in ~Ware marked satis�es E[ �X( ~W )℄ � Hj ~W j � 1p :Proof. By a 
oupling argument, we 
an assume that the number of phases isunbounded. The 
laim follows along the same line as the proof of Lemma 20,repla
ing the notion of iteration with the notion of phase and the probability 1=Mwith p.We next bound the approximation fa
tor of the algorithm for a generi
 samplingpro
edure (satisfying some properties).Lemma 24. Suppose that Step (1b) satis�es the following two properties:(a) Ea
h 
omponent C is sampled with probability at most � � xsC(b) Ea
h edge e in the witness tree is marked with probability at least �.Then the approximation fa
tor of the algorithm in Figure 5 is at most ln(4)�( (1+")�� +2"2� ).Proof. As in the proof of Theorem 21, one hasE[ �D(e)℄ = keXq=1Pr[jW (e)j = q℄ � E[ �D(e) j jW (e)j = q℄Lem 18+23� Xq�1 �12�q �Hq � 1� = ln(4) � 1� : (2)8If 1T x = mN = O(1) and jCj = O(1) for C 2 C, then the number of terminals would be boundedby a 
onstant { in this 
ase an optimum solution 
an be 
omputed in polynomial time.Journal of the ACM, Vol. ?, No. ?, ? 20?.



22 � Byrka et al.Let opts be the 
ost of an optimal Steiner tree at the beginning of phase s. Theexpe
ted 
ost of the sampled 
omponents satis�esEh 1="2Xs=1 �sXi=1 
(Cs;i)i � 1="2Xs=1 XC2CsE[� � xsC � 
(C)℄� �(1 + ") � 1="2Xs=1 E[opts℄� �(1 + ") Xe2S�E[ �D(e)℄ � 
(e) (2)� ln(4) � �(1 + ")� opt:Let S0 := fe 2 S� j �D(e) > 1="2g be a feasible Steiner tree at the end of the lastphase. By Markov's inequality and (2),Pr[ �D(e) > 1="2℄ � ln(4)"2� :Therefore E[
(S0)℄ � ln(4) "2� � opt. The minimum-
ost terminal spanning tree is atmost twi
e that expensive, hen
e E[
(T )℄ � 2 ln(4) "2� � opt. The 
laim follows.Lemma 24 suggests an alternative way to implement the algorithm from Se
tion 5.Consider the following natural implementation of Step (1b):(Independent Phase Sampling)Sample �s = " �M 
omponents Cs;1; : : : ; Cs;�s independently (with rep-etitions), where Cs;i = C 2 Cs with probability xsC=M .The Independent Phase Sampling samples a 
omponent C with a probabilityof at most �s � 1M �xsC = " �xsC . On the other hand, the probability that edge e 2 Wis marked is essentially lower bounded by ". Inspe
ting Lemma 24, we see that� � � � ", whi
h gives the following 
orollary.Corollary 25. The algorithm from Figure 5 whi
h implements Step (1b) withthe Independent Phase Sampling is (ln(4)+O("))-approximate in expe
tation.This provides a 1:39-approximation algorithm that needs to solve just a 
onstant(rather than polynomial) number of LPs. In parti
ular, its running time mightbe 
ompetitive with the better-than-2 approximation algorithms in the literature.But a drawba
k of the Independent Phase Sampling implementation is that itneeds too many (namely polynomially many) random bits: hen
e it is not easy toderandomize. For this reason we introdu
e a more 
omplex sampling pro
edure inthe next subse
tion.6.2 A Dependent Sampling Pro
edureWe next des
ribe an alternative implementation of Step (1b), whi
h still guarantees� � � � ", and requires only O(log n) random bits. We fo
us on a spe
i�
 phases and an edge e 2 W . Let (x;C) := (xs;Cs). We renumber the 
omponents su
hthat C = (C0; : : : ; Cm�1), and we let xj := xCj = 1N .(Dependent Phase Sampling)Journal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 23(i) Choose A 2 f0; : : : ;m � 1g and B 2 f1; : : : ;m � 1g uniformly andindependently at random.(ii) Sele
t Cj with j 2 J := fA+ i � B mod m j i = 1; : : : ; b "Nm
g.Observe that Step (ii) requires only O(logm) random bits. Sin
e m = nO(1), thisnumber of bits is O(log n).We will show that: (1) any 
omponent Cj is sampled with probability no morethan �xj , � := " and (2) edge e is marked with probability at least � := "(1� 2").The �rst 
laim is easy to show.Lemma 26. Implementing Step (1b) with the Dependent Phase Sampling,ea
h 
omponent Cj is sampled with probability at most " � xj .Proof. For any 
omponent Cj , Pr[j 2 J ℄ = 1m � b "Nm
 � "N = " � xj .Showing 
laim (2) is more involving.Lemma 27. Implementing Step (1b) with the Dependent Phase Sampling,ea
h edge e 2 W is marked with probability at least "(1� 2").Proof. Let wCj be the probability distribution for 
omponent Cj as in Lemma 19.Re
all that Pr[BrW (Cj) = B℄ = wCj (B) andÆ := m�1Xj=0 xj XB2BW (Cj):e2BwCj (B) � 1:Let yj := PB2BW (Cj):e2B wCj (B) denote the probability that e is marked, giventhat Cj is sampled. Sin
e xj = 1N , we have Pm�1j=0 yj = ÆN . There lies no harmin assuming that Æ = 1, sin
e the probability that e is marked is in
reasing in theyj 's.Let Ej be the event that Cj is sampled and e 2 BrW (Cj). It is suÆ
ient to showthat Pr[Sm�1j=0 Ej ℄ � "(1 � 2"). The 
ru
ial insight is to obtain a lower bound onPr[Ej ℄ and an upper bound on Pr[Ej \ Ej0 ℄ for j 6= j0. First of all, we havePr[Ej ℄ = yj � Pr[j 2 J ℄ = yj � j"mN k � 1m � "(1� ")yjN ; (3)using that "mN � 1" by assumption. Se
ondly, let j; j0 2 f0; : : : ;m� 1g be distin
t
omponent indi
es. Then j; j0 2 J if and only if the systemj �m A+Bi (4)j0 �m A+Bi0has a solution i; i0. But sin
e Zm is a �eld, for any distin
t pair i; i0 2 f1; : : : ; b "mN 
g,there is pre
isely one pair (A;B) 2 f0; : : : ;m � 1g � f1; : : : ;m� 1g satisfying (4).Hen
ePr[Ej \ Ej0 ℄ � yj � yj0 � j"mN k � �j"mN k� 1� � 1m � (m� 1) � yj � yj0 � "2N2 : (5)Journal of the ACM, Vol. ?, No. ?, ? 20?.



24 � Byrka et al.By the in
lusion-ex
lusion prin
iple (see, e.g., Corollary A.2 in [Arora and Barak2009℄), Pr hm�1[j=0 Eji � m�1Xj=0 Pr[Ej ℄� m�1Xj=0 Xj0 6=jPr[Ej \ Ej0 ℄(3)+(5)� m�1Xj=0 "(1� ")yjN � "2N2 m�1Xj=0 yj| {z }=N �Xj0 6=j yj0| {z }�N� "(1� ")� "2 = "(1� 2");whi
h proves the 
laim.A deterministi
 (ln(4) + ")-approximation algorithm easily follows.Proof of Theorem 3. Consider the algorithm from Figure 5 whi
h imple-ments Step (1b) with the Dependent Phase Sampling. This algorithm 
anbe derandomized by 
onsidering all the possible out
omes of random variables Aand B in ea
h phase, whi
h are at most m2="2 . The 
laim on the approximationfollows from Lemmas 24, 26, and 27.We 
an similarly derandomize the result for quasi-bipartite graphs.Theorem 28. For any 
onstant " > 0, there is a deterministi
 polynomial-timealgorithm for the Steiner tree problem on quasi-bipartite graphs with approximationratio 7360 + ".Proof. Consider the same algorithm as in Theorem 3. Lemmas 23, 26, and 27still hold. Under the same assumptions as in Lemma 24, and by the di�erent 
hoi
eof the witness tree W in this 
ase, we now haveE[ �D(e)℄ � 1k �Hk�1 � 1� + �1� 1k� �H1 � 1� = �1k �Hk�1 + k � 1k � � 1� � 7360 � 1� :Then the expe
ted 
ost of the sampled 
omponents satis�es E[Ps;i 
(Cs;i)℄ �7360 �(1+")� � opt. Similarly, the expe
ted 
ost of the �nal spanning tree satis�esE[
(T )℄ � 2 � 7360 "2� � opt. Altogether, the approximation fa
tor from Lemma 24now redu
es to 7360 � ( (1+")�� + 2"2� ). The 
laim follows along the same line as inTheorem 3.7. INTEGRALITY GAPIn this se
tion we upper bound (Se
tion 7.1) and lower bound (Se
tion 7.2) theintegrality gap of DCR. Furthermore, we 
ompare DCR with BCR (Se
tion 7.3).7.1 An Upper BoundNote that, despite the fa
t that our analysis is based on an LP relaxation of theproblem, it does not imply a ln(4) (nor even a 1:5) upper bound on the integralitygap of the studied LP. It only provides a 1 + ln(2) upper bound, as shown inTheorem 13 (by letting " tend to zero). This is be
ause the LP 
hanges duringJournal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 25the iterations of the algorithm, and its solution is only bounded with respe
t to theinitial optimal integral solution. In this se
tion we prove that our LP has integralitygap at most 1 + ln(3)=2 < 1:55. Before pro
eeding with our (fairly te
hni
al)argument, let us remark that, after the 
onferen
e version of this paper appeared,a shorter and perhaps more elegant proof (still based on the Bridge Lemma) of thesame 
laim was re
ently given in [Chakrabarty et al. 2010b℄.In order to prove the 1:55 upper bound on the integrality gap of DCR, 
laimedin Theorem 4, we 
onsider the algorithm R&Z by Robins and Zelikovsky [2005℄.We show that this algorithm produ
es solutions of 
ost bounded with respe
t tothe optimal fra
tional solutions to k-DCR (and hen
e of DCR). This is a
hievedby 
ombining the original analysis in [Robins and Zelikovsky 2005℄ with our newBridge Lemma 11. This approa
h was, to some extent, inspired by an argumentin [Charikar and Guha 2005℄ in the 
ontext of fa
ility lo
ation. We leave it asan interesting open problem to prove a ln(4) (or even 1:5) upper bound on theintegrality gap of DCR (if possible). This might involve the development of afra
tional version of Lemma 14.Algorithm R&Z works as follows. It 
onstru
ts a sequen
e T 0; T 1; : : : ; T � of ter-minal spanning trees, where T 0 is a minimum-
ost terminal spanning tree in theoriginal graph. At iteration t we are given a tree T t and a 
ost fun
tion 
t on theedges of the tree (initially 
0 � 
). The algorithm 
onsiders any 
andidate 
ompo-nent C with at least 2 and at most k terminals (k-
omponent). Let T t[C℄ denotethe minimum spanning tree of the graph T t[C, where the edges e 2 C have weight0 and the edges f 2 T t weight 
t(f). The subset of edges in T t but not in T t[C℄are denoted by BrT t(C). In fa
t, BrT t (C) is the set of bridges of T t with respe
tto R(C) and the above weight fun
tion. For a given 
omponent C, we denote asLoss(C) the minimum-
ost subforest of C with the property that there is a pathbetween ea
h Steiner node in C and some terminal in R(C). In the terminologyfrom Se
tion 3, Loss(C) is the 
omplement of the set of bridges of the subtree Cafter 
ontra
ting R(C). We let loss(C) = 
(Loss(C)).It is 
onvenient to de�ne the following quantities:gaint(C) = brT t(C)� 
(C) and sgaint(C) = gaint(C) + loss(C):The algorithm sele
ts the 
omponent Ct+1 whi
h maximizes gaint(C)=loss(C). Ifthis quantity is non-positive, the algorithm halts. Otherwise, it 
onsiders the graphT t [ Ct+1, and 
ontra
ts Loss(Ct+1). The tree T t+1 is a minimum-
ost terminalspanning tree in the resulting graph. In 
ase that parallel edges are 
reated thisway, the algorithm only keeps the 
heapest of su
h edges. This way we obtain the
ost fun
tion 
t+1 on the edges of T t+1.Lemma 29. [Robins and Zelikovsky 2005℄ For t = 1; 2; : : : ; �, 
t(T t) = 
t�1(T t�1)�sgaint�1(Ct):Let Apxk be the approximate solution 
omputed by the algorithm, and apxk =
(Apxk).Lemma 30. [Robins and Zelikovsky 2005℄ For any ` � �,apxk � X̀t=1 loss(Ct) + 
`(T `):Journal of the ACM, Vol. ?, No. ?, ? 20?.



26 � Byrka et al.Re
all that optf;k is the 
ost of the optimal fra
tional solution to k-DCR. Let (x;C)be an optimal fra
tional solution to k-DCR. De�ne lossf;k :=PC2C xC loss(C).Corollary 31. lossf;k � 12optf;k.Proof. From Lemma 6, for any C 2 C, loss(C) = 
(C) � brC(R(C)) � 12
(C).As a 
onsequen
e, lossf;k � 12PC2C xC � 
(C) = 12optf;k.Corollary 32. 
�(T �) � optf;k.Proof. Using the fa
t that gain�(C) = brT�(C)� 
(C) � 0 for any 
omponentC, 
�(T �) Bridge Lem 11� XC2CxCbrT�(C) � XC2CxC
(C) = optf;k:By Corollary 32, and sin
e 
t(T t) is a non-in
reasing fun
tion of t, there must be avalue of ` � � su
h that: 
`�1(T `�1) > optf;k � 
`(T `): (6)In the following we will boundPt̀=1 loss(Ct)+
`(T `). By Lemma 30, this will givea bound on apxk. Letgaintf := 
t(T t)� optf;k and sgaintf := gaintf + lossf;k:Lemma 33. For t = 1; 2; : : : ; �, sgaint�1(Ct)loss(Ct) � sgaint�1flossf;k :Proof. We �rst note thatgaint�1flossf;k = 
t�1(T t�1)�PC2C xC
(C)PC2C xC loss(C)Bridge Lem 11� PC2C xC(brT t�1(C) � 
(C))PC2C xC loss(C)= PC2C xCgaint�1(C)PC2C xC loss(C)� maxC2C�gaint�1(C)loss(C) � � gaint�1(Ct)loss(Ct) ;where in the last inequality we used the fa
t that Ct maximizes gaint�1(C)=loss(C)over all the k-restri
ted 
omponents C. It follows thatsgaint�1(Ct)loss(Ct) = 1 + gaint�1(Ct)loss(Ct) � 1 + gaint�1flossf;k = sgaint�1flossf;k :We need some more notation. Let sgain`�1(C`) = sgain1 + sgain2 su
h thatsgain1 = 
`�1(T `�1)� optf;k (6)> 0: (7)Journal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding � 27We also let loss(C`) = loss1 + loss2 su
h thatsgain`�1(C`)loss(C`) = sgain1loss1 = sgain2loss2 : (8)Eventually, we de�nesgain`1f := sgain`�1f � sgain1(7)= 
`�1(T `�1)� optf;k + lossf;k � (
`�1(T `�1)� optf;k) = lossf;k: (9)Lemma 34. P`�1t=1 loss(Ct) + loss1 � lossf;k ln� sgain0fsgain`1f � :Proof. For every t = 1; 2; : : : ; `� 1,sgaintf = sgaint�1f � sgaint�1(Ct) Lem 33� sgaint�1f �1� loss(Ct)lossf;k � :Furthermore sgain`�1flossf;k Lem 33� sgain`�1(C`)loss(C`) (8)= sgain1loss1 ;from whi
h sgain`1f = sgain`�1f � sgain1 � sgain`�1f �1� loss1lossf;k� :Then sgain`1fsgain0f � �1� loss1lossf;k� `�1Yt=1�1� loss(Ct)lossf;k � :Taking the logarithm of both sides and re
alling that x � ln(1 + x),ln sgain0fsgain`1f ! � 1lossf;k  `�1Xt=1 loss(Ct) + loss1! :We now have all the ingredients to bound the approximation fa
tor of the algo-rithm with respe
t to optf;k. Let mst = 
(T 0) = 
0(T 0). The following theoremand 
orollary are straightforward adaptations of analogous results in [Robins andZelikovsky 2005℄.Theorem 35. apxk � optf;k + lossf;k ln�mst�optf;k+lossf;klossf;k � :Proof. Sin
e sgaint�1(Ct) � loss(Ct), it follows from (8) thatsgain2 � loss2: (10)Journal of the ACM, Vol. ?, No. ?, ? 20?.



28 � Byrka et al.Putting everything together we obtainapxk Lem 30� X̀t=1 loss(Ct) + 
`(T `)Lem 29= `�1Xt=1 loss(Ct) + loss(C`) + 
`�1(T `�1)� sgain`�1(C`)= `�1Xt=1 loss(Ct) + loss1 + loss2 + 
`�1(T `�1)� sgain1 � sgain2(10)� `�1Xt=1 loss(Ct) + loss1 + 
`�1(T `�1)� sgain1(7)= `�1Xt=1 loss(Ct) + loss1 + optf;kLem 34� optf;k + lossf;k ln sgain0fsgain`1f !(9)= optf;k + lossf;k ln�mst� optf;k + lossf;klossf;k � :Lemma 36. For any 
onstant k � 2, there exists a polynomial-time algorithmfor Steiner tree whi
h 
omputes a solution of 
ost at most 1+ln(3)=2 times the 
ostof the optimal fra
tional solution to k-DCR.Proof. A straightforward adaptation of Lemma 5 implies thatmst � 2optf;k:Combining the inequality above with Theorem 35, we obtainapxk � optf;k + lossf;k ln�1 + 2optf;k � optf;klossf;k � :The right-hand side of the inequality above is an in
reasing fun
tion of lossf;k. ByCorollary 31, lossf;k � 12optf;k, whi
h impliesapxk � optf;k + 12optf;k ln�1 + 22optf;k � optf;koptf;k � = optf;k �1 + ln(3)2 � :Theorem 4 follows.Proof of Theorem 4. From Lemma 7, optf;k � �k � optf . The 
laim followsfrom Lemma 36 and Theorem 1 by 
hoosing a large-enough k.7.2 A Lower BoundThe best-known lower bound on the integrality gap of BCR (prior to our work) is8=7 [K�onemann et al. 2007℄. We 
an use the same family of instan
es to prove thesame lower bound for DCR.Journal of the ACM, Vol. ?, No. ?, ? 20?.
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0012 0102 0112 1002 1012 1102 1112

r�
0012 0102 0112 1002 1012 1102 1112Fig. 6. Skutella's graph. Nodes are labeled with their indi
es in binary representation.Theorem 37. The integrality gap of DCR is at least 8=7 > 1:142.Proof. We will use Skutella's graph [K�onemann et al. 2007℄. Consider a SetCover instan
e with elements U = f1; : : : ; 7g and sets S1; : : : ; S7. Let b(i) be ave
tor from Z32 that is the binary representation of i, for example b(3) = (0; 1; 1).We de�ne the sets by Sj := fi 2 U j b(i) � b(j) �2 1g. Note that this is exa
tlythe de�nition of the instan
e whi
h yields a 
(logn) lower bound on the integralitygap of Set Cover for n = 7 [Vazirani 2001℄. The 
riti
al property is that for ourparti
ular instan
e one needs 3 sets to 
over all elements, but 
hoosing ea
h set toan extent of 1=4 gives a fra
tional Set Cover solution of 
ost 7=4.Next we de�ne a graph where ea
h element forms a terminal and ea
h set is anon-terminal node 
onne
ted to the root and to the 
ontained elements by unit 
ostedges (see Figure 6).If we dire
t all the edges upwards, the graph 
an be de
omposed into 7 edge-disjoint 
omponents, ea
h one 
ontaining one non-terminal node and the 5 edgesin
ident into it. On one hand installing 1=4 on ea
h of these 
omponents gives afra
tional solution of 
ost 35=4, while on the other hand at least 3 Steiner nodesmust be in
luded for an integer solution. Consequently opt = 10 and we obtain thepromised gap of 1035=4 = 87 .7.3 Comparison with BCRWe start by observing that DCR is a relaxation stri
tly stronger than BCR.Lemma 38. Let optDCR and optBCR be the optimal fra
tional solutions to DCRand BCR, respe
tively, for a given input instan
e. Then optDCR � optBCR andthere are examples where stri
t inequality holds.Proof. Any feasible solution to DCR 
an be turned into a feasible solution toBCR of the same 
ost. In fa
t, it is suÆ
ient to split ea
h 
omponent into the
orresponding set of edges. This proves the �rst part of the 
laim. An example ofstri
t inequality is given in Figure 7.Observe that the 1:55 upper bound on the integrality gap of DCR does not implythe same bound on the integrality gap of BCR. It remains as a 
hallenging openproblem to show whether the integrality gap of BCR is smaller than 2 or not.Journal of the ACM, Vol. ?, No. ?, ? 20?.
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v1 v2 v3

r

t11 t12 t13 t21 t22 t23 t31 t32 t33
s11 s12 s13 s21 s22 s23 s31 s32 s33

Fig. 7. All edges have 
ost 1. The unique optimal solution to BCR, of 
ost 15, installs 
apa
ity1=4 on the 
entral edges and 
apa
ity 1=2 on the remaining edges (always dire
ted upwards). The
heapest solution to DCR has 
ost 7=4 � 9 = 15:75. The overall 
apa
ity reserved on ea
h edge isthe same as in the BCR 
ase, ex
luding the top edges, where the 
apa
ity is 3=4. The (integral)optimal Steiner tree has 
ost 17.The best-known lower bound on the integrality gap of BCR is 8=7 > 1:142 [K�one-mann et al. 2007; Vazirani 2001℄. In parti
ular, the family of instan
es whi
h pro-vides this bound is the same as in Se
tion 7.2. We next present an improved lowerbound of 36=31 on the integrality gap of BCR.Theorem 39. The integrality gap of BCR is at least 36=31 > 1:161.Proof. The basi
 idea is generalizing the 
onstru
tion used in Se
tion 7.2. Letp 2 N be a parameter. We 
reate a graph with p + 2 levels and unit 
ost edges.For i 2 f1; : : : ; pg one has 7i non-terminal nodes on the ith level, ea
h representedby a ve
tor from U i, where U = f1; : : : ; 7g. Furthermore we have a root terminalon level 0 and 7p terminals on the (p+ 1)th level, represented by ve
tors from Up.We 
onne
t the root to all nodes in the �rst level. For i = 1; : : : ; p, 
onsider nodesu = (u1; : : : ; ui) 2 U i on level i and v = (v1; : : : ; vi+1) 2 U i+1 on level i + 1. We
onne
t u and v by an edge if (u1; : : : ; ui�1) = (v1; : : : ; vi�1) and b(ui) � b(vi) �2 1.We 
onne
t the non-terminal node u 2 Up on level p with terminal v 2 Up on levelp+1 in a similar manner, namely if and only if (u1; : : : ; up�1) = (v1; : : : ; vp�1) andb(up) � b(vp) �2 1. Observe that, for p = 1, we obtain exa
tly Skutella's graph. Thegraph obtained for p = 2 is depi
ted in Figure 8.Let us 
onsider any integer optimal solution, of 
ost opt, and dire
t the edgestowards r�. Ea
h time we have an edge going from a level i downwards to leveli + 1 we 
an repla
e it by an edge to level i � 1 without dis
onne
ting the tree.Observe that, for i = 0; : : : ; p� 1, we need at least 3 � 7i edges between level i andi + 1 and that 7p edges are needed between the last two levels. This amount ofJournal of the ACM, Vol. ?, No. ?, ? 20?.
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11121314151617 21222324252627 31323334353637 41424344454647 51525354555657 61626364656667 7172737475767711121314151617 21222324252627 31323334353637 41424344454647 51525354555657 61626364656667 71727374757677

0123 Fig. 8. Instan
e for p = 2. Nodes are labeled with the 
orresponding ve
tor in abbreviatednotation; all edges have unit 
osts. The optimal fra
tional solution 
onsist of installing 
apa
ity1=16 on ea
h edge from level 2 to level 1 and 
apa
ity 1=4 otherwise (always dire
ted \upwards"),thus optf = 72+72=4+7=4 = 63. On the other hand for an integer solution one needs 3+3�7+72 =73 edges. The gap for this instan
e is 
onsequently 7363 � 1:158.edges is also suÆ
ient, thusopt = 3 � (70 + 71 + : : :+ 7p�1) + 7p = 32 � 7p � 12 :Consider now the optimal fra
tional solution to BCR for the same instan
e. Letoptpf denote its 
ost. This solution installs 
apa
ity 1=4 on the edges in
ident to theroot and to the terminals, and 
apa
ity 1=16 on the remaining edges (all dire
tedupwards). Hen
eoptpf = 447p + 416 � (71 + 72 + : : :+ 7p) = 3124 � 7p � 724 :The 
laim follows sin
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