2,127 research outputs found

    Statistical Mechanics of Steiner trees

    Get PDF
    The Minimum Weight Steiner Tree (MST) is an important combinatorial optimization problem over networks that has applications in a wide range of fields. Here we discuss a general technique to translate the imposed global connectivity constrain into many local ones that can be analyzed with cavity equation techniques. This approach leads to a new optimization algorithm for MST and allows to analyze the statistical mechanics properties of MST on random graphs of various types

    Hypergraphic LP Relaxations for Steiner Trees

    Get PDF
    We investigate hypergraphic LP relaxations for the Steiner tree problem, primarily the partition LP relaxation introduced by Koenemann et al. [Math. Programming, 2009]. Specifically, we are interested in proving upper bounds on the integrality gap of this LP, and studying its relation to other linear relaxations. Our results are the following. Structural results: We extend the technique of uncrossing, usually applied to families of sets, to families of partitions. As a consequence we show that any basic feasible solution to the partition LP formulation has sparse support. Although the number of variables could be exponential, the number of positive variables is at most the number of terminals. Relations with other relaxations: We show the equivalence of the partition LP relaxation with other known hypergraphic relaxations. We also show that these hypergraphic relaxations are equivalent to the well studied bidirected cut relaxation, if the instance is quasibipartite. Integrality gap upper bounds: We show an upper bound of sqrt(3) ~ 1.729 on the integrality gap of these hypergraph relaxations in general graphs. In the special case of uniformly quasibipartite instances, we show an improved upper bound of 73/60 ~ 1.216. By our equivalence theorem, the latter result implies an improved upper bound for the bidirected cut relaxation as well.Comment: Revised full version; a shorter version will appear at IPCO 2010

    Linear-Delay Enumeration for Minimal Steiner Problems

    Full text link
    Kimelfeld and Sagiv [Kimelfeld and Sagiv, PODS 2006], [Kimelfeld and Sagiv, Inf. Syst. 2008] pointed out the problem of enumerating KK-fragments is of great importance in a keyword search on data graphs. In a graph-theoretic term, the problem corresponds to enumerating minimal Steiner trees in (directed) graphs. In this paper, we propose a linear-delay and polynomial-space algorithm for enumerating all minimal Steiner trees, improving on a previous result in [Kimelfeld and Sagiv, Inf. Syst. 2008]. Our enumeration algorithm can be extended to other Steiner problems, such as minimal Steiner forests, minimal terminal Steiner trees, and minimal directed Steiner trees. As another variant of the minimal Steiner tree enumeration problem, we study the problem of enumerating minimal induced Steiner subgraphs. We propose a polynomial-delay and exponential-space enumeration algorithm of minimal induced Steiner subgraphs on claw-free graphs. Contrary to these tractable results, we show that the problem of enumerating minimal group Steiner trees is at least as hard as the minimal transversal enumeration problem on hypergraphs

    Approximate Euclidean Steiner trees

    Get PDF
    An approximate Steiner tree is a Steiner tree on a given set of terminals in Euclidean space such that the angles at the Steiner points are within a specified error e from 120 degrees. This notion arises in numerical approximations of minimum Steiner trees (W. D. Smith, Algorithmica, 7 (1992), 137–177). We investigate the worst-case relative error of the length of an approximate Steiner tree compared to the shortest tree with the same topology. Rubinstein, Weng and Wormald (J. Global Optim. 35 (2006), 573–592) conjectured that this relative error is at most linear in e, independent of the number of terminals. We verify their conjecture for the two-dimensional case as long as the error e is sufficiently small in terms of the number of terminals. We derive a lower bound linear in e for the relative error in the two-dimensional case when e is sufficiently small in terms of the number of terminals. We find improved estimates of the relative error for larger values of e, and calculate exact values in the plane for three and four terminals
    • …
    corecore