179 research outputs found

    Using Facebook for Image Steganography

    Full text link
    Because Facebook is available on hundreds of millions of desktop and mobile computing platforms around the world and because it is available on many different kinds of platforms (from desktops and laptops running Windows, Unix, or OS X to hand held devices running iOS, Android, or Windows Phone), it would seem to be the perfect place to conduct steganography. On Facebook, information hidden in image files will be further obscured within the millions of pictures and other images posted and transmitted daily. Facebook is known to alter and compress uploaded images so they use minimum space and bandwidth when displayed on Facebook pages. The compression process generally disrupts attempts to use Facebook for image steganography. This paper explores a method to minimize the disruption so JPEG images can be used as steganography carriers on Facebook.Comment: 6 pages, 4 figures, 2 tables. Accepted to Fourth International Workshop on Cyber Crime (IWCC 2015), co-located with 10th International Conference on Availability, Reliability and Security (ARES 2015), Toulouse, France, 24-28 August 201

    An Overview of Steganography for the Computer Forensics Examiner (Updated Version, February 2015)

    Get PDF
    Steganography is the art of covered or hidden writing. The purpose of steganography is covert communication-to hide the existence of a message from a third party. This paper is intended as a high-level technical introduction to steganography for those unfamiliar with the field. It is directed at forensic computer examiners who need a practical understanding of steganography without delving into the mathematics, although references are provided to some of the ongoing research for the person who needs or wants additional detail. Although this paper provides a historical context for steganography, the emphasis is on digital applications, focusing on hiding information in online image or audio files. Examples of software tools that employ steganography to hide data inside of other files as well as software to detect such hidden files will also be presented. An edited version originally published in the July 2004 issues of Forensic Science Communications

    Natural Image Statistics for Digital Image Forensics

    Get PDF
    We describe a set of natural image statistics that are built upon two multi-scale image decompositions, the quadrature mirror filter pyramid decomposition and the local angular harmonic decomposition. These image statistics consist of first- and higher-order statistics that capture certain statistical regularities of natural images. We propose to apply these image statistics, together with classification techniques, to three problems in digital image forensics: (1) differentiating photographic images from computer-generated photorealistic images, (2) generic steganalysis; (3) rebroadcast image detection. We also apply these image statistics to the traditional art authentication for forgery detection and identification of artists in an art work. For each application we show the effectiveness of these image statistics and analyze their sensitivity and robustness

    Steganography and steganalysis for digital image enhanced Forensic analysis and recommendations

    Get PDF
    Image steganography and steganalysis, which involve concealing and uncovering hidden data within images, have gained significant attention in recent years, finding applications in various fields like military, medicine, e-government, and social media. Despite their importance in real-world applications, some practical aspects remain unaddressed. To bridge this gap, the current study compares image steganography and steganalysis tools and techniques for Digital Forensic Investigators (DFIs) to uncover concealed information in images. We perform a thorough review of Artificial Intelligence, statistical, and signature steganalysis methods, assesses both free and paid versions, and experiments with various image features like size, colour, mean square error (MSE), root mean square error (RMSE), and peak signal-to-noise ratio (PSNR) using a JPEG/PNG dataset. The research provides valuable insights for professionals in cybersecurity. The originality of this research resides in the fact that, although previous studies have been conducted in this area, none have explicitly examined the analysis of the selected tools—F5, Steghide, Outguess for image steganography, and Aletheia, StegExpose for image steganalysis—and their application to JPEG image analysis

    Steganalysis in computer forenics

    Get PDF
    Steganography deals with secrecy and convert communication and today the techniques for countering this in the context of computer forensics has somewhat fallen behind. This paper will discuss on how steganography is used for information hiding and its implications on computer forensics. While this paper is not about recovering hidden information, tools that are used for both steganography and steganalysis is evaluated and identifies the shortcomings that the forensic analysts would face. In doing so this paper urges on what the stakeholders in the field of computer forensics needs to do to keep ahead of criminals who are using such techniques to their advantage and obscure their criminal activities

    Steganalysis in computer forensics

    Get PDF
    Steganography deals with secrecy and convert communication and today the techniques for countering this in the context of computer forensics has somewhat fallen behind. This paper will discuss on how steganography is used for information hiding and its implications on computer forensics. While this paper is not about recovering hidden information, tools that are used for both steganography and steganalysis is evaluated and identifies the shortcomings that the forensic analysts would face. In doing so this paper urges on what the stakeholders in the field of computer forensics needs to do to keep ahead of criminals who are using such techniques to their advantage and obscure their criminal activities

    Enhancement of capacity, detectability and distortion of BMP, GIF and JPEG images with distributed steganography

    Get PDF
    The advance of Big Data and Internet growth has driven the need for more abundant storage to hold and share data. People are sending more messages to one another and paying attention to the aspects of privacy and security as opposed to previous decades. One of the types of files that are widely shared and instantaneous available over the web are images. They can become available as soon as a shot is taken and keep this closely related to the owner; it is not easy. It has been proposed here to use Steganography to embed information of the author, image description, license of usage and any other secrete information related to it. Thinking of this, an analysis of the best file types, considering capacity, detectability, and distortion was necessary to determine the best solution to tackle current algorithm weaknesses. The performance of BMP, GIF, and JPEG initialises the process of addressing current weaknesses of Steganographic algorithms. The main weaknesses are capacity, detectability and distortion to secure copyright images. Distributed Steganography technique also plays a crucial part in this experiment. It enhances all the file formats analysed. It provided better capacity and less detectability and distortion, especially with BMP. BMP has found to be the better image file format. The unique combination of Distributed Steganography and the use of the best file format approach to address the weaknesses of previous algorithms, especially increasing the capacity. It will undoubtedly be beneficial for the day to day user, social media creators and artists looking to protect their work with copyright

    Building a dataset for image steganography

    Get PDF
    Image steganography and steganalysis techniques discussed in the literature rely on using a dataset(s)created based on cover images obtained from the public domain, through the acquisition of images from Internet sources, or manually. This issue often leads to challenges in validating, benchmarking, and reproducing reported techniques in a consistent manner. It is our view that the steganography/steganalysis research community would benefit from the availability of common datasets, thus promoting transparency and academic integrity. In this research, we have considered four aspects: image acquisition, pre-processing, steganographic techniques, and embedding rate in building a dataset for image steganography
    • …
    corecore