24 research outputs found

    Multi-channel Hybrid Access Femtocells: A Stochastic Geometric Analysis

    Full text link
    For two-tier networks consisting of macrocells and femtocells, the channel access mechanism can be configured to be open access, closed access, or hybrid access. Hybrid access arises as a compromise between open and closed access mechanisms, in which a fraction of available spectrum resource is shared to nonsubscribers while the remaining reserved for subscribers. This paper focuses on a hybrid access mechanism for multi-channel femtocells which employ orthogonal spectrum access schemes. Considering a randomized channel assignment strategy, we analyze the performance in the downlink. Using stochastic geometry as technical tools, we model the distribution of femtocells as Poisson point process or Neyman-Scott cluster process and derive the distributions of signal-to-interference-plus-noise ratios, and mean achievable rates, of both nonsubscribers and subscribers. The established expressions are amenable to numerical evaluation, and shed key insights into the performance tradeoff between subscribers and nonsubscribers. The analytical results are corroborated by numerical simulations.Comment: This is the final version, which was accepted in IEEE Transactions on Communication

    The Outage Probability of a Finite Ad Hoc Network in Nakagami Fading

    Full text link
    An ad hoc network with a finite spatial extent and number of nodes or mobiles is analyzed. The mobile locations may be drawn from any spatial distribution, and interference-avoidance protocols or protection against physical collisions among the mobiles may be modeled by placing an exclusion zone around each radio. The channel model accounts for the path loss, Nakagami fading, and shadowing of each received signal. The Nakagami m-parameter can vary among the mobiles, taking any positive value for each of the interference signals and any positive integer value for the desired signal. The analysis is governed by a new exact expression for the outage probability, defined to be the probability that the signal-to-interference-and-noise ratio (SINR) drops below a threshold, and is conditioned on the network geometry and shadowing factors, which have dynamics over much slower timescales than the fading. By averaging over many network and shadowing realizations, the average outage probability and transmission capacity are computed. Using the analysis, many aspects of the network performance are illuminated. For example, one can determine the influence of the choice of spreading factors, the effect of the receiver location within the finite network region, and the impact of both the fading parameters and the attenuation power laws.Comment: to appear in IEEE Transactions on Communication

    Laplace Functional Ordering of Point Processes in Large-scale Wireless Networks

    Full text link
    Stochastic orders on point processes are partial orders which capture notions like being larger or more variable. Laplace functional ordering of point processes is a useful stochastic order for comparing spatial deployments of wireless networks. It is shown that the ordering of point processes is preserved under independent operations such as marking, thinning, clustering, superposition, and random translation. Laplace functional ordering can be used to establish comparisons of several performance metrics such as coverage probability, achievable rate, and resource allocation even when closed form expressions of such metrics are unavailable. Applications in several network scenarios are also provided where tradeoffs between coverage and interference as well as fairness and peakyness are studied. Monte-Carlo simulations are used to supplement our analytical results.Comment: 30 pages, 5 figures, Submitted to Hindawi Wireless Communications and Mobile Computin

    Wirelessly Powered Backscatter Communication Networks: Modeling, Coverage and Capacity

    Get PDF
    Future Internet-of-Things (IoT) will connect billions of small computing devices embedded in the environment and support their device-to-device (D2D) communication. Powering this massive number of embedded devices is a key challenge of designing IoT since batteries increase the devices' form factors and battery recharging/replacement is difficult. To tackle this challenge, we propose a novel network architecture that enables D2D communication between passive nodes by integrating wireless power transfer and backscatter communication, which is called a wirelessly powered backscatter communication (WP-BackCom) network. In the network, standalone power beacons (PBs) are deployed for wirelessly powering nodes by beaming unmodulated carrier signals to targeted nodes. Provisioned with a backscatter antenna, a node transmits data to an intended receiver by modulating and reflecting a fraction of a carrier signal. Such transmission by backscatter consumes orders-of-magnitude less power than a traditional radio. Thereby, the dense deployment of low-complexity PBs with high transmission power can power a large-scale IoT. In this paper, a WP-BackCom network is modeled as a random Poisson cluster process in the horizontal plane where PBs are Poisson distributed and active ad-hoc pairs of backscatter communication nodes with fixed separation distances form random clusters centered at PBs. The backscatter nodes can harvest energy from and backscatter carrier signals transmitted by PBs. Furthermore, the transmission power of each node depends on the distance from the associated PB. Applying stochastic geometry, the network coverage probability and transmission capacity are derived and optimized as functions of backscatter parameters, including backscatter duty cycle and reflection coefficient, as well as the PB density. The effects of the parameters on network performance are characterized.Comment: 28 pages, 11 figures, has been submitted to IEEE Trans. on Wireless Communicatio

    Modeling Heterogeneous Network Interference Using Poisson Point Processes

    Full text link
    Cellular systems are becoming more heterogeneous with the introduction of low power nodes including femtocells, relays, and distributed antennas. Unfortunately, the resulting interference environment is also becoming more complicated, making evaluation of different communication strategies challenging in both analysis and simulation. Leveraging recent applications of stochastic geometry to analyze cellular systems, this paper proposes to analyze downlink performance in a fixed-size cell, which is inscribed within a weighted Voronoi cell in a Poisson field of interferers. A nearest out-of-cell interferer, out-of-cell interferers outside a guard region, and cross-tier interference are included in the interference calculations. Bounding the interference power as a function of distance from the cell center, the total interference is characterized through its Laplace transform. An equivalent marked process is proposed for the out-of-cell interference under additional assumptions. To facilitate simplified calculations, the interference distribution is approximated using the Gamma distribution with second order moment matching. The Gamma approximation simplifies calculation of the success probability and average rate, incorporates small-scale and large-scale fading, and works with co-tier and cross-tier interference. Simulations show that the proposed model provides a flexible way to characterize outage probability and rate as a function of the distance to the cell edge.Comment: Submitted to the IEEE Transactions on Signal Processing, July 2012, Revised December 201
    corecore