223,698 research outputs found

    Penalized variable selection procedure for Cox models with semiparametric relative risk

    Full text link
    We study the Cox models with semiparametric relative risk, which can be partially linear with one nonparametric component, or multiple additive or nonadditive nonparametric components. A penalized partial likelihood procedure is proposed to simultaneously estimate the parameters and select variables for both the parametric and the nonparametric parts. Two penalties are applied sequentially. The first penalty, governing the smoothness of the multivariate nonlinear covariate effect function, provides a smoothing spline ANOVA framework that is exploited to derive an empirical model selection tool for the nonparametric part. The second penalty, either the smoothly-clipped-absolute-deviation (SCAD) penalty or the adaptive LASSO penalty, achieves variable selection in the parametric part. We show that the resulting estimator of the parametric part possesses the oracle property, and that the estimator of the nonparametric part achieves the optimal rate of convergence. The proposed procedures are shown to work well in simulation experiments, and then applied to a real data example on sexually transmitted diseases.Comment: Published in at http://dx.doi.org/10.1214/09-AOS780 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Specification testing in nonlinear and nonstationary time series autoregression

    Full text link
    This paper considers a class of nonparametric autoregressive models with nonstationarity. We propose a nonparametric kernel test for the conditional mean and then establish an asymptotic distribution of the proposed test. Both the setting and the results differ from earlier work on nonparametric autoregression with stationarity. In addition, we develop a new bootstrap simulation scheme for the selection of a suitable bandwidth parameter involved in the kernel test as well as the choice of a simulated critical value. The finite-sample performance of the proposed test is assessed using one simulated example and one real data example.Comment: Published in at http://dx.doi.org/10.1214/09-AOS698 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Pruning and Nonparametric Multiple Change Point Detection

    Full text link
    Change point analysis is a statistical tool to identify homogeneity within time series data. We propose a pruning approach for approximate nonparametric estimation of multiple change points. This general purpose change point detection procedure `cp3o' applies a pruning routine within a dynamic program to greatly reduce the search space and computational costs. Existing goodness-of-fit change point objectives can immediately be utilized within the framework. We further propose novel change point algorithms by applying cp3o to two popular nonparametric goodness of fit measures: `e-cp3o' uses E-statistics, and `ks-cp3o' uses Kolmogorov-Smirnov statistics. Simulation studies highlight the performance of these algorithms in comparison with parametric and other nonparametric change point methods. Finally, we illustrate these approaches with climatological and financial applications.Comment: 9 pages. arXiv admin note: text overlap with arXiv:1505.0430

    On the Bernstein-von Mises phenomenon for nonparametric Bayes procedures

    Full text link
    We continue the investigation of Bernstein-von Mises theorems for nonparametric Bayes procedures from [Ann. Statist. 41 (2013) 1999-2028]. We introduce multiscale spaces on which nonparametric priors and posteriors are naturally defined, and prove Bernstein-von Mises theorems for a variety of priors in the setting of Gaussian nonparametric regression and in the i.i.d. sampling model. From these results we deduce several applications where posterior-based inference coincides with efficient frequentist procedures, including Donsker- and Kolmogorov-Smirnov theorems for the random posterior cumulative distribution functions. We also show that multiscale posterior credible bands for the regression or density function are optimal frequentist confidence bands.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1246 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Discussion of "Frequentist coverage of adaptive nonparametric Bayesian credible sets"

    Get PDF
    Discussion of "Frequentist coverage of adaptive nonparametric Bayesian credible sets" by Szab\'o, van der Vaart and van Zanten [arXiv:1310.4489v5].Comment: Published at http://dx.doi.org/10.1214/15-AOS1270D in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Asymptotic equivalence and adaptive estimation for robust nonparametric regression

    Get PDF
    Asymptotic equivalence theory developed in the literature so far are only for bounded loss functions. This limits the potential applications of the theory because many commonly used loss functions in statistical inference are unbounded. In this paper we develop asymptotic equivalence results for robust nonparametric regression with unbounded loss functions. The results imply that all the Gaussian nonparametric regression procedures can be robustified in a unified way. A key step in our equivalence argument is to bin the data and then take the median of each bin. The asymptotic equivalence results have significant practical implications. To illustrate the general principles of the equivalence argument we consider two important nonparametric inference problems: robust estimation of the regression function and the estimation of a quadratic functional. In both cases easily implementable procedures are constructed and are shown to enjoy simultaneously a high degree of robustness and adaptivity. Other problems such as construction of confidence sets and nonparametric hypothesis testing can be handled in a similar fashion.Comment: Published in at http://dx.doi.org/10.1214/08-AOS681 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Discussion of "Frequentist coverage of adaptive nonparametric Bayesian credible sets"

    Full text link
    Discussion of "Frequentist coverage of adaptive nonparametric Bayesian credible sets" by Szab\'o, van der Vaart and van Zanten [arXiv:1310.4489v5].Comment: Published at http://dx.doi.org/10.1214/15-AOS1270E in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Rejoinder to discussions of "Frequentist coverage of adaptive nonparametric Bayesian credible sets"

    Get PDF
    Rejoinder of "Frequentist coverage of adaptive nonparametric Bayesian credible sets" by Szab\'o, van der Vaart and van Zanten [arXiv:1310.4489v5].Comment: Published at http://dx.doi.org/10.1214/15-AOS1270REJ in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore