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Discussion of "Frequentist of Coverage of Adaptive Nonparametric
Bayesian Credible Sets

Abstract
The focus of the present paper is on constructing l2 balls as confidence sets. There are some advantages that
come with the focus on balls for confidence sets. For bands results in Low (1997) rule out the possibility of
adaptation over even a pair of Lipschitz or Sobolev spaces at least for confidence bands that have a guaranteed
coverage level. On the other hand, fully rate adaptive confidence balls which do maintain coverage probability
can be constructed over Sobolev smoothness levels that range over an interval [α, 2α]. However, this range of
models where such adaptation is possible is still quite limited and here the authors develop a theory that
applies over a broader class of models. The approach taken, following Gin´e and Nickl (2010) and Bull
(2012), is to focus on parameters that are in some sense typical and removing a set of parameter values that
cause difficulties at least when constructing adaptive sets. The goal is then to construct fully adaptive
confidence sets over the remaining collection of parameter values. In the present paper the parameter values
that are kept belong to a class of parameters that they call polished tail sequences and the authors develop
results that show that a particular empirical Bayes credible ball is both honest when restricted to such
sequences and adaptive in size.
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DISCUSSION OF “FREQUENTIST COVERAGE OF ADAPTIVE

NONPARAMETRIC BAYESIAN CREDIBLE SETS”1

By Mark G. Low and Zongming Ma

University of Pennsylvania

We congratulate the authors for this very interesting article focused on the
frequentist coverage of Bayesian credible sets in the context of an infinite-
dimensional signal in white noise models. In such settings the construction
of honest confidence sets is especially complicated, at least when the goal
is to construct confidence sets that have a size that adapts to the unknown
parameters in the model, while maintaining coverage probability.

The focus of the present paper is on constructing l2 balls as confidence
sets. There are some advantages that come with the focus on balls for con-
fidence sets. For bands results in Low (1997) rule out the possibility of
adaptation over even a pair of Lipschitz or Sobolev spaces at least for confi-
dence bands that have a guaranteed coverage level. On the other hand, fully
rate adaptive confidence balls which do maintain coverage probability can
be constructed over Sobolev smoothness levels that range over an interval
[α,2α]. However, this range of models where such adaptation is possible is
still quite limited and here the authors develop a theory that applies over
a broader class of models. The approach taken, following Giné and Nickl
(2010) and Bull (2012), is to focus on parameters that are in some sense
typical and removing a set of parameter values that cause difficulties at
least when constructing adaptive sets. The goal is then to construct fully
adaptive confidence sets over the remaining collection of parameter values.
In the present paper the parameter values that are kept belong to a class of
parameters that they call polished tail sequences and the authors develop
results that show that a particular empirical Bayes credible ball is both
honest when restricted to such sequences and adaptive in size.

There are of course many settings where it is more natural to focus on the
construction of confidence bands rather than confidence balls and, typically,
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theory and methodology developed for balls do not provide a way to also
construct bands. Here, however, the balls are constructed from an empirical
Bayes posterior and even though the focus of the paper is on the construc-
tion of balls, the simulation example in Section 4 suggests that a general
methodology for the construction of confidence bands can also be developed
based on this posterior. The visualization of the credible sets is constructed
by making draws from the empirical Bayes posterior and plotting the 95%
that are closest in l2 to the posterior mean. Each draw gives rise to an en-
tire function, but visually the appearance is somewhat akin to a confidence
band and claims from the picture of good coverage could perhaps also be
interpreted from that point of view.

Looking closely at the pictures in Figure 1, it appears that either the
entire function is covered or there is only a very small region where the true
function is not covered by such a credible set. Although the visualizations
given in Figure 1 are not technically bands, it is quite easy to make true
bands as follows. First generate N realizations from the posterior and keep
the 95% that are closest in l2 to the mean. This gives a collection of curves,
f1, f2, . . . , fm where m = 0.95N . A band [L(t),U(t)] can then be made by
taking pointwise the max and min of these functions, L(t) = min1≤i≤m fi(t)
and U(t) = max1≤i≤m fi(t).

In this discussion, we explore this approach in the context of the non-
parametric regression model

yi = f(ti) + σεi, i= 1, . . . , n,(1)

where ti =
i
n

and εi
i.i.d.
∼ N(0,1), and make some comparisons with bands

found in Cai, Low and Ma (2014). As mentioned above, truly adaptive bands
do not exist over the most commonly considered function spaces. Cai, Low
and Ma (2014) develop a new formulation for such problems by relaxation of
the requirement that the entire function is covered by the confidence band.
Two approaches are considered. In the first the goal is to minimize the
expected width of the confidence band while maintaining coverage at most
of the points in [0,1] where the expected width adjusts to the smoothness of
the underlying function. The second approach is to limit the excess mass of
the function lying outside the confidence band while once again minimizing
the expected width of the confidence bands.

We report here how the proposed confidence band based on the empirical
Bayes posterior performs in terms of this new formulation and compare the
performance with the adaptive confidence band procedure considered in Cai,
Low and Ma (2014). We consider five test functions. The first four of these
were also considered in Cai, Low and Ma (2014) and three of these were
considered earlier in Wahba (1983). The five functions are as follows:

Case 1. f(t)∝B10,5(t) +B7,7(t) +B5,10(t),
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Fig. 1. One realization of the observed data with n = 8192 observed points and the re-

sulting band for the EBayes procedure. Case 1: top left; case 2: top right; case 3: middle

left; case 4: middle right; case 5: bottom. Black solid: the true function. Gray: observed

data. Orange: confidence band. Black dashed: band center.

Case 2. f(t)∝ 3B30,17(t) + 2B3,11(t),

Case 3. f(t)∝ 7B15,30(t) + 2sin(32πt− 2π
3
)− 3cos(16πt)− cos(64πt),

Case 4 f(t)∝ (t− 1
3
)I(1

3
≤ t≤ 1

2
) + (2

3
− t)I(1

2
≤ t≤ 2

3
),

Case 5 f(t) ∝ 1 + 8(t − 0.45)I(0.45 ≤ t ≤ 0.5) + 8(0.55 − t)I(0.5 ≤ t ≤

0.55),

where Ba,b(t) stands for the density function of a Beta(a, b) distribution. In

all cases, we rescale the function so that
∫ 1

0
f2 = 1 and we take σ = 1.
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Table 1

Simulation results from 500 repetitions: f1, each with 2000 posterior draws

ACB

#Sample Mean size NC0.95 RE0.95 L∞ coverage

1024 1.326 0.002 <0.001 0.924
8192 0.446 0 0 0.990

EBayes

#Sample Mean max size Mean ave size NC0.95 RE0.95 L∞ coverage L2 coverage

1024 1.246 0.858 0 0 0.990 1.000
8192 0.520 0.358 0 0 0.986 0.996

In order to construct the band based on the above empirical Bayes pos-
terior approach, we first apply a discrete cosine transform to the regression
data. This yields the observations Xj =

1
n

∑n
i=1 yi cos((j−

1
2
)πti). The obser-

vation sequence X = (X1,X2, . . .) then satisfies equation (2.1) of the present
paper with κi = 1. It is then easy to construct the confidence bands based on
the empirical Bayes posterior as suggested above. Note that the construc-
tion is not entirely automatic, as the number of draws N from the posterior
needs to be specified. The number of draws for the empirical Bayes (EBayes)
band cannot be taken too large, or the band will be very wide, or too small
because then the band has little hope of covering the unknown function.
However, in the examples given below we found that for values of N that
ranged from 2000 to 20,000, the width of the interval grew by only around
15% and, thus, from a purely methodological point of view, the method does
not appear too sensitive to the choice of this parameter. In the simulation
results given below we take N = 2000, the same value that is used in the pa-
per to generate the pictures from the simulations from the empirical Bayes
procedure.

For the adaptive confidence band (ACB) there are two parameters that
need to be chosen. The choice of these parameters results in control of the set
of noncovered points as well as control of the excess mass over a collection
of smoothness classes. In the experiments given below we always take β0 = 2
and M0 = 1000, and in this case the adaptation results that are given in
Cai, Low and Ma (2014) are for a range of smoothness between 2 and 4. Of
course, in practice, it is not always clear whether a function would belong
to a particular smoothness class and both case 4 and case 5 fall outside the
range.

In Tables 1–5 we report the mean width of the adaptive confidence band
procedure found in Cai, Low and Ma (2014). Figure 2 shows representative
realizations of the band on the five test functions. Although the width of
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Table 2

Simulation results from 500 repetitions: f2, each with 2000 posterior draws

ACB

#Sample Mean size NC0.95 RE0.95 L∞ coverage

1024 1.969 0.003 <0.001 0.918
8192 0.673 0 0 0.980

EBayes

#Sample Mean max size Mean ave size NC0.95 RE0.95 L∞ coverage L2 coverage

1024 1.783 1.299 0 0 0.990 1.000
8192 0.792 0.536 0 0 0.978 1.000

Table 3

Simulation results from 500 repetitions: f3, each with 2000 posterior draws

ACB

#Sample Mean size NC0.95 RE0.95 L∞ coverage

1024 1.965 0.005 <0.001 0.888
8192 0.911 0.003 <0.001 0.932

EBayes

#Sample Mean max size Mean ave size NC0.95 RE0.95 L∞ coverage L2 coverage

1024 2.083 1.442 0 0 0.974 1.000
8192 1.048 0.707 <0.001 <0.001 0.934 1.000

Table 4

Simulation results from 500 repetitions: f4, each with 2000 posterior draws

ACB

#Sample Mean size NC0.95 RE0.95 L∞ coverage

1024 1.337 0.003 <0.001 0.912
8192 0.669 0 0 0.990

EBayes

#Sample Mean max size Mean ave size NC0.95 RE0.95 L∞ coverage L2 coverage

1024 1.859 1.278 0 0 0.978 1.000
8192 0.826 0.558 0 0 0.952 1.000
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Table 5

Simulation results from 500 repetitions: f5, each with 2000 posterior draws

ACB

#Sample Mean size NC0.95 RE0.95 L∞ coverage

1024 1.341 0.003 < 0.001 0.912
8192 0.459 0.024 0.003 0.298

EBayes

#Sample Mean max size Mean ave size NC0.95 RE0.95 L∞ coverage L2 coverage

1024 0.841 0.588 0.033 0.004 0.552 0.980
8192 0.419 0.388 0.039 0.009 0.318 0.878

the band is random for a given set of data, it has fixed width over the
interval. The EBayes band is of variable width and we report both the mean
maximum width and then the mean average width. For each replication we
also calculated the fraction of the interval where the function is not covered
as well as the relative excess mass, and we report the 95th percentiles of
these values based on 500 replications. Finally, we also report the fraction
of the time that the bands cover the whole function and also, in the case of
the EBayes procedure, the coverage of the associated L2 balls.

For each of these test functions we find that the EBayes procedure per-
forms quite well from the point of view of the framework given in Cai, Low
and Ma (2014).
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Fig. 2. One realization of the observed data with n = 8192 observed points and the re-

sulting band for the ACB procedure. Case 1: top left; case 2: top right; case 3: middle left;

case 4: middle right; case 5: bottom. Black solid: the true function. Gray: observed data.

Orange: confidence band. Black dashed: band center.
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