101 research outputs found

    Vandermonde-subspace Frequency Division Multiplexing for Two-Tiered Cognitive Radio Networks

    Full text link
    Vandermonde-subspace frequency division multiplexing (VFDM) is an overlay spectrum sharing technique for cognitive radio. VFDM makes use of a precoder based on a Vandermonde structure to transmit information over a secondary system, while keeping an orthogonal frequency division multiplexing (OFDM)-based primary system interference-free. To do so, VFDM exploits frequency selectivity and the use of cyclic prefixes by the primary system. Herein, a global view of VFDM is presented, including also practical aspects such as linear receivers and the impact of channel estimation. We show that VFDM provides a spectral efficiency increase of up to 1 bps/Hz over cognitive radio systems based on unused band detection. We also present some key design parameters for its future implementation and a feasible channel estimation protocol. Finally we show that, even when some of the theoretical assumptions are relaxed, VFDM provides non-negligible rates while protecting the primary system.Comment: 9 pages, accepted for publication in IEEE Transactions on Communication

    Uplink Channel Allocation Scheme and QoS Management Mechanism for Cognitive Cellular-Femtocell Networks

    Get PDF
    Cognitive radio and femtocell are promising technologies which can satisfy the requirements of future mobile communications in terms of dynamic spectrum sharing and high user density areas. Providing quality-of-service (QoS) guaranteed realtime services is challenging issue of future cognitive cellular-femtocell mobile networks. In this paper, we introduce a user’s QoS management mechanism used to protect SINR of macro users from QoS violation caused by femtocell users. We design a novel uplink channel allocation scheme (denoted as “flexible scheme”) for real-time connections. The scheme uses the information of interference level and channel occupancy collected at  cognitive femtocell access points and their covering macro base station (MBS) and apply relevant selection criteria to select an appropriate channel which causes the minimums interference to macro users of the covering MBS. Performance results prove that comparing with femtocell-access-point (FAP)-based and MBS-based uplink channel allocation schemes, the novel “flexible scheme” can provide lower unsuccessful probability of new connection requests

    Cognitive-Empowered Femtocells: An Intelligent Paradigm of a Robust and Efficient Media Access

    Get PDF
    Driven by both the need for ubiquitous wireless services and the stringent strain on radio spectrum faced in today's wireless communications, cognitive radio (CR) have been investigated as a promising solution to deploy Wireless Regional Area Networks (WRANs) for an efficient spectrum utilization. Communication devices with CR capabilities are able to access spectrum bands licensed for other wireless services in an opportunistic and secondary fashion, while preventing harmful interference to incumbent licensed services. However, a lesson learned from early experiences in developing such macro-cellular networks is that it becomes increasingly less economically viable to develop CR macrocellular infrastructures for increasing data rates in both line-of-sight as well as non-line-of-sight situation of WRAN, and the corresponding quality of service (QoS) in macrocellular networks is also noticeably degraded due to path loss, shadowing, and multipath fading due to wall penetration. Moreover, there are several challenges to make the real-world CR enabling dynamic spectrum access a difficult problem to implement without harmful interference. First, the hardware design of cognitive radio on the physical layer involves the tuning over a broad range of spectrum to detect a weak signal in a dynamic environment of fading channels, which in turn makes identification of the spectrum opportunities hard to achieve in an efficient and accurate manner. Second, opportunistic media access based on imperfect spectrum usage information obtain from physical layer brings up undesirable interference issue, as well as reliability issues introduced by mutual interference. Third, the curial issue is to determine which channels to use for data transmissions in presence of the dynamic and opportunistic nature of wireless environments, in the case where pre-defined dedicated control channel is not available in the complex and heterogenous networks. In this dissertation, a novel framework called Cognitive-Empowered Femtocell (CEF), which combines CR techniques with femtocell networking, is introduced to tackle these challenges and achieve better spectrum reuse, lower interference, easy integration, wider network coverage, as well as fast and cost effective early stage WRAN. In this framework, a sensing coordination scheme is proposed to gracefully unshackles the master/slave relationship between central controllers and end users, while maintaining order and coordination such that better sensing precision and efficiency can be achieved. As such, the network intelligence can be expanded from controlling the intelligence paradigm to better understand the satisfy wireless user needs. We also discuss design and deployment aspects such as sensing with reasoning approach, gossip-enabled stochastic media access without a dedicated control channel, all of which are important to the success of the CEF framework. We illustrate that such a framework allows wireless users to intelligently capture spectrum opportunities while mitigating interference to other users, as well as improving the network capacity. Performance analysis and simulations were conducted based on these techniques to provide insight on the future direction of interference suppression for dynamic spectrum access

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Autonomous Component Carrier Selection for 4G Femtocells

    Get PDF

    Internet Of Things and Humans

    Get PDF
    The never ending demand for capacity and the need for ubiquitous radio coverage requires attention to the design of new radio networks. Incoming paradigms (industry 4.0, machine to machine communication and Internet of Things) will overburden even more cellular networks. Current (4G) and near-future (5G) architecture will not be able to support such traffic increase. Moreover, space-time and content heterogeneity of data should be exploited to improve network performance. However, current networks performance are deteriorated by this heterogeneity. Pico- and femto-cell networks, with cell densification, are proposed as solution. A drawback, is the urgency of high-speed backhaul to connect the cells among themselves and the core network. Current research trends assume that the density of cells will be comparable to user density. In such a situation, deploying high-speed backhaul will be expensive. Moreover, regardless whatever deployment of cells, connectivity is a commodity given as always granted. Modern technologies and services rely on stable networks. Nonetheless, whenever also a basic connectivity fails because of a disaster, not even a basic form of radio communication can be provided. Flexible networks adapting to the environment "on the go", could reduce this problem. A to alleviate the aforementioned problems, My work unfolds starting from a couple of intuitions. 1- Traffic demand is not just a data to be processed, transmitted and answered to. The kind of data producing the traffic matters. Thus, we should treat different traffic streams accordingly. This facet of my work is treated under different points of view in the dissertation. 2- In current networks, users are seen as "passive", being just source and/or destination of a traffic stream. There are reasons to envision that users could be exploited as "active" users participating to the network itself fostering its performance. This considerations are accounted in the so called Delay Tolerant Networks

    Integration of TV White Space and Femtocell Networks.

    Get PDF
    PhDFemtocell is an effective approach to increase system capacity in cellular networks. Since traditional Femtocells use the same frequency band as the cellular network, cross-tier and co-tier interference exist in such Femtocell networks and have a major impact on deteriorating the system throughput. In order to tackle these challenges, interference mitigation has drawn attentions from both academia and industry. TV White Space (TVWS) is a newly opened portion of spectrum, which comes from the spare spectrum created by the transition from analogue TV to digital TV. It can be utilized by using cognitive radio technology according to the policies from telecommunications regulators. This thesis considers using locally available TVWS to reduce the interference in Femtocell networks. The objective of this research is to mitigate the downlink cross-tier and co-tier interference in different Femtocell deployment scenarios, and increase the throughput of the overall system. A Geo-location database model to obtain locally available TVWS information in UK is developed in this research. The database is designed using power control method to calculate available TVWS channels and maximum allowable transmit power based on digital TV transmitter information in UK and regulations on unlicensed use of TVWS. The proposed database model is firstly combined with a grid-based resource allocation scheme and investigated in a simplified Femtocell network to demonstrate the gains of using TVWS in Femtocell networks. Furthermore, two Femtocell deployment scenarios are studied in this research. In the suburban Femtocell deployment scenario, a novel system architecture that consists of the Geo-location database and a resource allocation scheme using TVWS is proposed to mitigate cross-tier interference between Macrocell and Femtocells. In the dense Femtocell deployment scenario, a power efficient resource allocation scheme is proposed to maximize the throughput of Femtocells while limiting the co-tier interference among Femtocells. The optimization problem in the power efficient scheme is solved by using sequential quadratic programming method. The simulation results show that the proposed schemes can effectively mitigate the interference in Femtocell networks in practical deployment scenarios
    • …
    corecore