4,204 research outputs found

    Statistical topological data analysis using persistence landscapes

    Full text link
    We define a new topological summary for data that we call the persistence landscape. Since this summary lies in a vector space, it is easy to combine with tools from statistics and machine learning, in contrast to the standard topological summaries. Viewed as a random variable with values in a Banach space, this summary obeys a strong law of large numbers and a central limit theorem. We show how a number of standard statistical tests can be used for statistical inference using this summary. We also prove that this summary is stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein distances.Comment: 26 pages, final version, to appear in Journal of Machine Learning Research, includes two additional examples not in the journal version: random geometric complexes and Erdos-Renyi random clique complexe

    Topological Data Analysis for Object Data

    Full text link
    Statistical analysis on object data presents many challenges. Basic summaries such as means and variances are difficult to compute. We apply ideas from topology to study object data. We present a framework for using persistence landscapes to vectorize object data and perform statistical analysis. We apply to this pipeline to some biological images that were previously shown to be challenging to study using shape theory. Surprisingly, the most persistent features are shown to be "topological noise" and the statistical analysis depends on the less persistent features which we refer to as the "geometric signal". We also describe the first steps to a new approach to using topology for object data analysis, which applies topology to distributions on object spaces.Comment: 16 pages, 12 figure

    Statistical Methods in Topological Data Analysis for Complex, High-Dimensional Data

    Get PDF
    The utilization of statistical methods an their applications within the new field of study known as Topological Data Analysis has has tremendous potential for broadening our exploration and understanding of complex, high-dimensional data spaces. This paper provides an introductory overview of the mathematical underpinnings of Topological Data Analysis, the workflow to convert samples of data to topological summary statistics, and some of the statistical methods developed for performing inference on these topological summary statistics. The intention of this non-technical overview is to motivate statisticians who are interested in learning more about the subject.Comment: 15 pages, 7 Figures, 27th Annual Conference on Applied Statistics in Agricultur

    The persistence landscape and some of its properties

    Full text link
    Persistence landscapes map persistence diagrams into a function space, which may often be taken to be a Banach space or even a Hilbert space. In the latter case, it is a feature map and there is an associated kernel. The main advantage of this summary is that it allows one to apply tools from statistics and machine learning. Furthermore, the mapping from persistence diagrams to persistence landscapes is stable and invertible. We introduce a weighted version of the persistence landscape and define a one-parameter family of Poisson-weighted persistence landscape kernels that may be useful for learning. We also demonstrate some additional properties of the persistence landscape. First, the persistence landscape may be viewed as a tropical rational function. Second, in many cases it is possible to exactly reconstruct all of the component persistence diagrams from an average persistence landscape. It follows that the persistence landscape kernel is characteristic for certain generic empirical measures. Finally, the persistence landscape distance may be arbitrarily small compared to the interleaving distance.Comment: 18 pages, to appear in the Proceedings of the 2018 Abel Symposiu

    Persistence Flamelets: multiscale Persistent Homology for kernel density exploration

    Full text link
    In recent years there has been noticeable interest in the study of the "shape of data". Among the many ways a "shape" could be defined, topology is the most general one, as it describes an object in terms of its connectivity structure: connected components (topological features of dimension 0), cycles (features of dimension 1) and so on. There is a growing number of techniques, generally denoted as Topological Data Analysis, aimed at estimating topological invariants of a fixed object; when we allow this object to change, however, little has been done to investigate the evolution in its topology. In this work we define the Persistence Flamelets, a multiscale version of one of the most popular tool in TDA, the Persistence Landscape. We examine its theoretical properties and we show how it could be used to gain insights on KDEs bandwidth parameter
    • …
    corecore