1,190 research outputs found

    What QoS research hasn't understood about risk

    Get PDF

    Using Dedicated and Opportunistic Networks in Synergy for a Cost-effective Distributed Stream Processing Platform

    Full text link
    This paper presents a case for exploiting the synergy of dedicated and opportunistic network resources in a distributed hosting platform for data stream processing applications. Our previous studies have demonstrated the benefits of combining dedicated reliable resources with opportunistic resources in case of high-throughput computing applications, where timely allocation of the processing units is the primary concern. Since distributed stream processing applications demand large volume of data transmission between the processing sites at a consistent rate, adequate control over the network resources is important here to assure a steady flow of processing. In this paper, we propose a system model for the hybrid hosting platform where stream processing servers installed at distributed sites are interconnected with a combination of dedicated links and public Internet. Decentralized algorithms have been developed for allocation of the two classes of network resources among the competing tasks with an objective towards higher task throughput and better utilization of expensive dedicated resources. Results from extensive simulation study show that with proper management, systems exploiting the synergy of dedicated and opportunistic resources yield considerably higher task throughput and thus, higher return on investment over the systems solely using expensive dedicated resources.Comment: 9 page

    Service differentiation in multihop wireless packet networks

    Get PDF
    This work explores the potential of link layer scheduling combined with MAC layer prioritization for providing service differentiation in multihop wireless packet networks. As a result of limited power, multihop characteristic and mobility, packet loss ratio in wireless ad hoc networks tends to be high compared to wireline and one-hop mobile data networks. Therefore, for wireless ad hoc networks, DiffServ-like distributed service differentiation schemes are more viable than hard QoS solutions, which are mainly designed for wireline networks. The choice and implementation of proper queuing and scheduling methods, which determine how packets will use the channel when bandwidth becomes available, contributes significantly to this differentiation. Due to the broadcast nature of wireless communication, media access is one of the main resources that needs to be shared among different flows. Thus, one can design and implement algorithms also at MAC level for service differentiation. In this study, in addition to the scheduling discipline, IEEE 802.11 Distributed Coordination Function is used to increase the media access probability of a specific class of traffic. It is shown that the service requirements of a class can be better met using this two level approach compared to the cases where either of these schemes used alone

    New dynamic bandwidth allocation algorithm analysis: DDSPON for ethernet passive optical networks

    Get PDF
    This project aims to present the state of the art in Dynamic Bandwidth Allocation (DBA) solutions, as well as the study and evaluation of one proposal of DBA algorithm: the Distributed Dynamic Scheduling for EPON (DDSPON), which is the UPC contribution to the research in scheduling algorithms for EPON

    Implementing and Evaluating Security in O-RAN: Interfaces, Intelligence, and Platforms

    Full text link
    The Open Radio Access Network (RAN) is a networking paradigm that builds on top of cloud-based, multi-vendor, open and intelligent architectures to shape the next generation of cellular networks for 5G and beyond. While this new paradigm comes with many advantages in terms of observatibility and reconfigurability of the network, it inevitably expands the threat surface of cellular systems and can potentially expose its components to several cyber attacks, thus making securing O-RAN networks a necessity. In this paper, we explore the security aspects of O-RAN systems by focusing on the specifications and architectures proposed by the O-RAN Alliance. We address the problem of securing O-RAN systems with an holistic perspective, including considerations on the open interfaces used to interconnect the different O-RAN components, on the overall platform, and on the intelligence used to monitor and control the network. For each focus area we identify threats, discuss relevant solutions to address these issues, and demonstrate experimentally how such solutions can effectively defend O-RAN systems against selected cyber attacks. This article is the first work in approaching the security aspect of O-RAN holistically and with experimental evidence obtained on a state-of-the-art programmable O-RAN platform, thus providing unique guideline for researchers in the field.Comment: 7 pages, 5 figures, 1 table, submitted to IEEE Network Magazin
    • …
    corecore