546 research outputs found

    Statistical Physics and Representations in Real and Artificial Neural Networks

    Full text link
    This document presents the material of two lectures on statistical physics and neural representations, delivered by one of us (R.M.) at the Fundamental Problems in Statistical Physics XIV summer school in July 2017. In a first part, we consider the neural representations of space (maps) in the hippocampus. We introduce an extension of the Hopfield model, able to store multiple spatial maps as continuous, finite-dimensional attractors. The phase diagram and dynamical properties of the model are analyzed. We then show how spatial representations can be dynamically decoded using an effective Ising model capturing the correlation structure in the neural data, and compare applications to data obtained from hippocampal multi-electrode recordings and by (sub)sampling our attractor model. In a second part, we focus on the problem of learning data representations in machine learning, in particular with artificial neural networks. We start by introducing data representations through some illustrations. We then analyze two important algorithms, Principal Component Analysis and Restricted Boltzmann Machines, with tools from statistical physics

    Physics of epigenetic landscapes and statistical inference by cells

    Full text link
    Biology is currently in the midst of a revolution. Great technological advances have led to unprecedented quantitative data at the whole genome level. However, new techniques are needed to deal with this deluge of high-dimensional data. Therefore, statistical physics has the potential to help develop systems biology level models that can incorporate complex data. Additionally, physicists have made great strides in understanding non-equilibrium thermodynamics. However, the consequences of these advances have yet to be fully incorporated into biology. There are three specific problems that I address in my dissertation. First, a common metaphor for describing development is a rugged "epigenetic landscape" where cell fates are represented as attracting valleys resulting from a complex regulatory network. I introduce a framework for explicitly constructing epigenetic landscapes that combines genomic data with techniques from spin-glass physics. The model reproduces known reprogramming protocols and identifies candidate transcription factors for reprogramming to novel cell fates, suggesting epigenetic landscapes are a powerful paradigm for understanding cellular identity. Second, I examine the dynamics of cellular reprogramming. By reanalyzing all available time-series data, I show that gene expression dynamics during reprogramming follow a simple one-dimensional reaction coordinate that is independent of both the time and details of experimental protocol used. I show that such a reaction coordinate emerges naturally from epigenetic landscape models of cell identity where cellular reprogramming is viewed as a "barrier-crossing" between the starting and ending cell fates. Overall, the analysis and model suggest that gene expression dynamics during reprogramming follow a canonical trajectory consistent with the idea of an "optimal path"' in gene expression space for reprogramming. Third, an important task of cells is to perform complex computations in response to external signals. Intricate networks are required to sense and process signals, and since cells are inherently non-equilibrium systems, these networks naturally consume energy. Since there is a deep connection between thermodynamics, computation, and information, a natural question is what constraints does thermodynamics place on statistical estimation and learning. I modeled a single chemical receptor and established the first fundamental relationship between the energy consumption and statistical accuracy of a receptor in a cell

    Emergence of Compositional Representations in Restricted Boltzmann Machines

    Full text link
    Extracting automatically the complex set of features composing real high-dimensional data is crucial for achieving high performance in machine--learning tasks. Restricted Boltzmann Machines (RBM) are empirically known to be efficient for this purpose, and to be able to generate distributed and graded representations of the data. We characterize the structural conditions (sparsity of the weights, low effective temperature, nonlinearities in the activation functions of hidden units, and adaptation of fields maintaining the activity in the visible layer) allowing RBM to operate in such a compositional phase. Evidence is provided by the replica analysis of an adequate statistical ensemble of random RBMs and by RBM trained on the handwritten digits dataset MNIST.Comment: Supplementary material available at the authors' webpag

    In All Likelihood, Deep Belief Is Not Enough

    Full text link
    Statistical models of natural stimuli provide an important tool for researchers in the fields of machine learning and computational neuroscience. A canonical way to quantitatively assess and compare the performance of statistical models is given by the likelihood. One class of statistical models which has recently gained increasing popularity and has been applied to a variety of complex data are deep belief networks. Analyses of these models, however, have been typically limited to qualitative analyses based on samples due to the computationally intractable nature of the model likelihood. Motivated by these circumstances, the present article provides a consistent estimator for the likelihood that is both computationally tractable and simple to apply in practice. Using this estimator, a deep belief network which has been suggested for the modeling of natural image patches is quantitatively investigated and compared to other models of natural image patches. Contrary to earlier claims based on qualitative results, the results presented in this article provide evidence that the model under investigation is not a particularly good model for natural image

    Equilibrium Propagation: Bridging the Gap Between Energy-Based Models and Backpropagation

    Full text link
    We introduce Equilibrium Propagation, a learning framework for energy-based models. It involves only one kind of neural computation, performed in both the first phase (when the prediction is made) and the second phase of training (after the target or prediction error is revealed). Although this algorithm computes the gradient of an objective function just like Backpropagation, it does not need a special computation or circuit for the second phase, where errors are implicitly propagated. Equilibrium Propagation shares similarities with Contrastive Hebbian Learning and Contrastive Divergence while solving the theoretical issues of both algorithms: our algorithm computes the gradient of a well defined objective function. Because the objective function is defined in terms of local perturbations, the second phase of Equilibrium Propagation corresponds to only nudging the prediction (fixed point, or stationary distribution) towards a configuration that reduces prediction error. In the case of a recurrent multi-layer supervised network, the output units are slightly nudged towards their target in the second phase, and the perturbation introduced at the output layer propagates backward in the hidden layers. We show that the signal 'back-propagated' during this second phase corresponds to the propagation of error derivatives and encodes the gradient of the objective function, when the synaptic update corresponds to a standard form of spike-timing dependent plasticity. This work makes it more plausible that a mechanism similar to Backpropagation could be implemented by brains, since leaky integrator neural computation performs both inference and error back-propagation in our model. The only local difference between the two phases is whether synaptic changes are allowed or not
    corecore