246 research outputs found

    Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs

    Get PDF
    Intrinsic parameter fluctuations introduced by discreteness of charge and matter will play an increasingly important role when semiconductor devices are scaled to decananometer and nanometer dimensions in next-generation integrated circuits and systems. In this paper, we review the analytical and the numerical simulation techniques used to study and predict such intrinsic parameters fluctuations. We consider random discrete dopants, trapped charges, atomic-scale interface roughness, and line edge roughness as sources of intrinsic parameter fluctuations. The presented theoretical approach based on Green's functions is restricted to the case of random discrete charges. The numerical simulation approaches based on the drift diffusion approximation with density gradient quantum corrections covers all of the listed sources of fluctuations. The results show that the intrinsic fluctuations in conventional MOSFETs, and later in double gate architectures, will reach levels that will affect the yield and the functionality of the next generation analog and digital circuits unless appropriate changes to the design are made. The future challenges that have to be addressed in order to improve the accuracy and the predictive power of the intrinsic fluctuation simulations are also discussed

    Intrinsic variability of nanoscale CMOS technology for logic and memory.

    Get PDF
    The continuous downscaling of CMOS technology, the main engine of development of the semiconductor Industry, is limited by factors that become important for nanoscale device size, which undermine proper device operation completely offset gains from scaling. One of the main problems is device variability: nominally identical devices are different at the microscopic level due to fabrication tolerance and the intrinsic granularity of matter. For this reason, structures, devices and materials for the next technology nodes will be chosen for their robustness to process variability, in agreement with the ITRS (International Technology Roadmap for Semiconductors). Examining the dispersion of various physical and geometrical parameters and the effect these have on device performance becomes necessary. In this thesis, I focus on the study of the dispersion of the threshold voltage due to intrinsic variability in nanoscale CMOS technology for logic and for memory. In order to describe this, it is convenient to have an analytical model that allows, with the assistance of a small number of simulations, to calculate the standard deviation of the threshold voltage due to the various contributions

    Intrinsic fluctuations in sub 10-nm double-gate MOSFETs introduced by discreteness of charge and matter

    Get PDF
    We study, using numerical simulation, the intrinsic parameter fluctuations in sub 10 nm gate length double gate MOSFETs introduced by discreteness of charge and atomicity of matter. The employed "atomistic" drift-diffusion simulation approach includes quantum corrections based on the density gradient formalism. The quantum confinement and source-to-drain tunnelling effects are carefully calibrated in respect of self-consistent Poisson-Schrodinger and nonequilibrium Green's function simulations. Various sources of intrinsic parameter fluctuations, including random discrete dopants in the source/drain regions, single dopant or charged defect state in the channel region and gate line edge roughness, are studied in detail

    Very large time constant Gm-C Filters

    Get PDF
    In this study a set of tools for the design of fully integrated transconductor-capacitor (Gm-C) filters, with very large time constants and current consumption under one micro-Ampere are presented. The selected application is a 2nd order bandpass-filter-amplifier, with a gain of 400 from 0.5 to 7Hz, carrying out the signal conditioning of a piezoelectric accelerometer which is part of an implantable cardiac pacemaker. The main challenge is to achieve very large time constants, without using any discrete external component. The chosen circuit technique to fulfill the requirement is series-parallel current division applied to standard symmetrical transconductors (OTAs). These circuits have demonstrated to be an excellent solution regarding their occupied area, power consumption, noise, linearity, and particularly offset. OTAs as low as 33pS -equivalent to a 30G resistor-, with up to 1V linear range, and input referred offset of a few mV, were designed, fabricated in a standard 0.8 micron CMOS technology, and tested. The application requires the series-parallel association of a large number of transistors, and the use of bias currents as low as a few pico-Amperes, which is not very common in analog integrated circuits. In this case the designer should employ maximum care in the selection of the transistor models to be used. A central aspect of this thesis was also to evaluate and develop noise and offset estimation models which was not obvious in the very beginning of the research. In the first two chapters an introduction to the target application is presented, and several MOS transistor characteristics in terms of the inversion coefficient -using the ACM transistor model- are evaluated. In chapter 3 it is discussed whether the usual flicker and thermal noise models are consistent regarding series-parallel association, and adequately represent the expected noise behavior under different bias conditions. A consistent, physics-based, one-equation-all-regions model for flicker noise in the MOS transistor is then presented. Several noise measurements are included demonstrating that the new model accurately fits widely different bias situations. A new model for mismatch offset in MOS transistors is presented, as a corollary of the flicker noise analysis. Finally, the correlation between flicker noise and mismatch offset, that can be seen as a DC noise, is shown. In chapter 4, the design of OTAs with an extended linear range, and very low transconductance, using series-parallel current division is presented. Precise tools are introduced for the estimation of noise and mismatch offset in series-parallel current mirrors, that are shown to help in the reduction of inaccuracies in the copy of currents with a large copy factor. The design and measurement of several OTA examples are presented. In chapter 5, the developed tools, and the OTAs shown, are employed in the design of the above mentioned filter for the piezoelectric accelerometer. A general methodology for the design of Gm-C filters with similar characteristics is established. The filter was fabricated and tested, successfully operating with a total power consumption of 233nA, up to a 2V power supply, with an input noise and mismatch offset of 2-4 Vrms, and 18 V respectively. To summarize the main results obtained were: The development of a new flicker noise model, the study of the effect of mismatch regarding series-parallel association, a new design methodology for OTAs and Gm-C filters. It is our hope that this constitutes a helpful set of tools for the circuit designer.En esta tesis se presenta un conjunto de herramientas para el diseño de circuitos integrados que implementan filtros transconductor-capacitor (Gm-C), de muy altas constantes de tiempo, con bajo ruido, y consumo de corriente por debajo del micro-Ampere. Como ejemplo de aplicación se toma un amplificador-pasabanda 2º orden, de ganancia 400 en la banda de 0.5 a 7Hz, que realiza el acondicionamiento de señal de un acelerómetro piezoeléctrico a ser empleado en un marcapasos implantable. El principal desafío es realizar en dicho filtro de tiempo continuo, muy altas constantes de tiempo sin usar componentes externos. La técnica elegida para alcanzar tal objetivo es la división serie-paralelo de corriente en transconductores (OTAs) simétricos estándar. Estos circuitos demostraron ser una excelente solución en cuanto al área ocupada, su consumo, ruido, linealidad, y en particular offset. Se diseñaron, fabricaron, y midieron, OTAs hasta 33pS -equivalente a una resistencia de 30G -, con hasta 1V de rango de lineal, y offset a la entrada de algunos mV, utilizando una tecnología CMOS de 0.8 micras de largo mínimo de canal. La aplicación requiere la asociación serie-paralelo de un gran número de transistores, y polarización con corrientes de hasta pico-Amperes, lo que constituye una situación poco frecuente en circuitos integrados analógicos. En este marco el diseñador debe elegir los modelos de transistor con sumo cuidado. Un aspecto central de esta tesis es también, el estudio y presentación de modelos adecuados de ruido y offset, que no resultan obvios al principio. En los primeros dos capítulos se realiza una introducción y se revisa, utilizando el modelo ACM, diferentes características del transistor MOS en función del nivel de inversión. En el capítulo 3 revisa la pertinencia y consistencia frente a la asociación serie-paralelo, de los modelos usuales de ruido de flicker o 1/f, y térmico. Luego se presenta, incluyendo medidas, un nuevo modelo físico, consistente, simple, y válido en todas las regiones de operación del transistor MOS, para el ruido de flicker. Como corolario a este estudio se presenta un nuevo modelo para estimar el desapareo entre transistores, en función no solo de la geometría, pero también de la polarización. Se demuestra la correlación, debido a su origen físico análogo, entre el ruido de flicker y el offset por desapareo que puede ser visto como un ruido en DC. En el capítulo 4 se presenta el diseño de OTAs con rango de linealidad extendido, y muy baja transconductancia, utilizando división serie-paralelo de corriente. Se presentan herramientas precisas para la estimación de offset y ruido y se demuestra la utilidad de la técnica para reducir el offset en espejos de corriente. Se presenta el diseño y medida de diversos OTAs. En el capítulo 5, las herramientas desarrolladas, y los OTAs presentados, son empleados en el diseño del filtro descripto para un acelerómetro piezoeléctrico. Se establece una metodología general para el diseño de filtros Gm-C con características similares. El filtro se fabricó y midió, operando en forma satisfactoria, con un consumo total de 230nA y hasta los 2V de tensión de alimentación, con ruido y offset a la entrada de tan solo 2-4 Vrms, y 18 V respectivamente. El desarrollo de un nuevo modelo de ruido 1/f para el transistor MOS, el estudio de la influencia del offset frente a la asociación serie-paralelo y su aplicación en OTAs, la metodología de diseño empleada, la demostración del uso de técnicas novedosas en una aplicación como la elegida que tiene relevancia tecnológica e interés académico; esperamos que todo ello constituya una contribución valiosa para la comunidad científica en microelectrónica y un conjunto de herramientas de utilidad para el diseño de circuitos

    Statistical modelling of nano CMOS transistors with surface potential compact model PSP

    Get PDF
    The development of a statistical compact model strategy for nano-scale CMOS transistors is presented in this thesis. Statistical variability which arises from the discreteness of charge and granularity of matter plays an important role in scaling of nano CMOS transistors especially in sub 50nm technology nodes. In order to achieve reasonable performance and yield in contemporary CMOS designs, the statistical variability that affects the circuit/system performance and yield must be accurately represented by the industry standard compact models. As a starting point, predictive 3D simulation of an ensemble of 1000 microscopically different 35nm gate length transistors is carried out to characterize the impact of statistical variability on the device characteristics. PSP, an advanced surface potential compact model that is selected as the next generation industry standard compact model, is targeted in this study. There are two challenges in development of a statistical compact model strategy. The first challenge is related to the selection of a small subset of statistical compact model parameters from the large number of compact model parameters. We propose a strategy to select 7 parameters from PSP to capture the impact of statistical variability on current-voltage characteristics. These 7 parameters are used in statistical parameter extraction with an average RMS error of less than 2.5% crossing the whole operation region of the simulated transistors. Moreover, the accuracy of statistical compact model extraction strategy in reproducing the MOSFET electrical figures of merit is studied in detail. The results of the statistical compact model extraction are used for statistical circuit simulation of a CMOS inverter under different input-output conditions and different number of statistical parameters. The second challenge in the development of statistical compact model strategy is associated with statistical generation of parameters preserving the distribution and correlation of the directly extracted parameters. By using advanced statistical methods such as principal component analysis and nonlinear power method, the accuracy of parameter generation is evaluated and compared to directly extracted parameter sets. Finally, an extension of the PSP statistical compact model strategy to different channel width/length devices is presented. The statistical trends of parameters and figures of merit versus channel width/length are characterized

    Bio-inspired VLSI Systems: from Synapse to Behavior

    Get PDF
    We investigate VLSI systems using biological computational principles. The elegance of biological systems throughout the structure levels provides possible solutions to many engineering challenges. Specifically, we investigate neural systems at the synaptic level and at the sensorimotor integration level, which inspire our similar implementations in silicon. For both VLSI systems, we use floating gate MOSFETs in standard CMOS processes as nonvolatile storage elements, which enable adaptation and programmability. We propose a compact silicon stochastic synapse and methods to incorporate activity-dependent dynamics, which emulate a biological stochastic synapse. We implement and demonstrate the first silicon stochastic synapse with short-term depression by modulating the influence of noise on the circuit. The circuit exhibits true randomness and similar behavior of rate normalization and information redundancy reduction as its biological counterparts. The circuit behavior also agrees well with the theory and simulation of a circuit model based on a subtractive single release model. To understand the stochastic behavior of the silicon stochastic synapse and the stochastic operation of conventional circuits due to semiconductor technology scaling, we develop the stochastic modeling of circuits and transient analysis from the numerical solution of the stochastic model. The analytical solution of steady state distribution could be obtained from first principles. Small signal stochastic models show the interaction between noise and circuit dynamics, elucidating the effect of device parameters and biases on the stochastic behavior. We investigate optic flow wide field integration based navigation inspired from the fly in simulation, theory, and VLSI design. We generalize the framework to limited view angles. We design and test an integrated motion image sensor with on-chip optic flow estimation, adaptation, and programmable spatial filtering to directly interface with actuators for autonomous navigation. This is the first reported image sensor that uses the spatial motion pattern to extract motion parameters enabled by the mismatch compensation and programmable filters. The sensor is integrated with a ground vehicle and navigation through simple tunnel environments is demonstrated. It provides light weight and low power integrated approach to autonomous navigation of micro air vehicles

    Disseny microelectrnic de circuits discriminadors de polsos pel detector LHCb

    Get PDF
    The aim of this thesis is to present a solution for implementing the front end system of the Scintillator Pad Detector (SPD) of the calorimeter system of the LHCb experiment that will start in 2008 at the Large Hadron Collider (LHC) at CERN. The requirements of this specific system are discussed and an integrated solution is presented, both at system and circuit level. We also report some methodological achievements. In first place, a method to study the PSRR (and any transfer function) in fully differential circuits taking into account the effect of parameter mismatch is proposed. Concerning noise analysis, a method to study time variant circuits in the frequency domain is presented and justified. This would open the possibility to study the effect of 1/f noise in time variants circuits. In addition, it will be shown that the architecture developed for this system is a general solution for front ends in high luminosity experiments that must be operated with no dead time and must be robust against ballistic deficit
    corecore