15,553 research outputs found

    Supertagged phrase-based statistical machine translation

    Get PDF
    Until quite recently, extending Phrase-based Statistical Machine Translation (PBSMT) with syntactic structure caused system performance to deteriorate. In this work we show that incorporating lexical syntactic descriptions in the form of supertags can yield significantly better PBSMT systems. We describe a novel PBSMT model that integrates supertags into the target language model and the target side of the translation model. Two kinds of supertags are employed: those from Lexicalized Tree-Adjoining Grammar and Combinatory Categorial Grammar. Despite the differences between these two approaches, the supertaggers give similar improvements. In addition to supertagging, we also explore the utility of a surface global grammaticality measure based on combinatory operators. We perform various experiments on the Arabic to English NIST 2005 test set addressing issues such as sparseness, scalability and the utility of system subcomponents. Our best result (0.4688 BLEU) improves by 6.1% relative to a state-of-theart PBSMT model, which compares very favourably with the leading systems on the NIST 2005 task

    Syntactic phrase-based statistical machine translation

    Get PDF
    Phrase-based statistical machine translation (PBSMT) systems represent the dominant approach in MT today. However, unlike systems in other paradigms, it has proven difficult to date to incorporate syntactic knowledge in order to improve translation quality. This paper improves on recent research which uses 'syntactified' target language phrases, by incorporating supertags as constraints to better resolve parse tree fragments. In addition, we do not impose any sentence-length limit, and using a log-linear decoder, we outperform a state-of-the-art PBSMT system by over 1.3 BLEU points (or 3.51% relative) on the NIST 2003 Arabic-English test corpus

    Robust Tuning Datasets for Statistical Machine Translation

    Full text link
    We explore the idea of automatically crafting a tuning dataset for Statistical Machine Translation (SMT) that makes the hyper-parameters of the SMT system more robust with respect to some specific deficiencies of the parameter tuning algorithms. This is an under-explored research direction, which can allow better parameter tuning. In this paper, we achieve this goal by selecting a subset of the available sentence pairs, which are more suitable for specific combinations of optimizers, objective functions, and evaluation measures. We demonstrate the potential of the idea with the pairwise ranking optimization (PRO) optimizer, which is known to yield too short translations. We show that the learning problem can be alleviated by tuning on a subset of the development set, selected based on sentence length. In particular, using the longest 50% of the tuning sentences, we achieve two-fold tuning speedup, and improvements in BLEU score that rival those of alternatives, which fix BLEU+1's smoothing instead.Comment: RANLP-201

    A syntactic skeleton for statistical machine translation

    Get PDF
    We present a method for improving statistical machine translation performance by using linguistically motivated syntactic information. Our algorithm recursively decomposes source language sentences into syntactically simpler and shorter chunks, and recomposes their translation to form target language sentences. This improves both the word order and lexical selection of the translation. We report statistically significant relative improvementsof 3.3% BLEU score in an experiment (English!Spanish) carried out on an 800-sentence test set extracted from the Europarl corpus

    F-structure transfer-based statistical machine translation

    Get PDF
    In this paper, we describe a statistical deep syntactic transfer decoder that is trained fully automatically on parsed bilingual corpora. Deep syntactic transfer rules are induced automatically from the f-structures of a LFG parsed bitext corpus by automatically aligning local f-structures, and inducing all rules consistent with the node alignment. The transfer decoder outputs the n-best TL f-structures given a SL f-structure as input by applying large numbers of transfer rules and searching for the best output using a log-linear model to combine feature scores. The decoder includes a fully integrated dependency-based tri-gram language model. We include an experimental evaluation of the decoder using different parsing disambiguation resources for the German data to provide a comparison of how the system performs with different German training and test parses

    Non-linear Learning for Statistical Machine Translation

    Full text link
    Modern statistical machine translation (SMT) systems usually use a linear combination of features to model the quality of each translation hypothesis. The linear combination assumes that all the features are in a linear relationship and constrains that each feature interacts with the rest features in an linear manner, which might limit the expressive power of the model and lead to a under-fit model on the current data. In this paper, we propose a non-linear modeling for the quality of translation hypotheses based on neural networks, which allows more complex interaction between features. A learning framework is presented for training the non-linear models. We also discuss possible heuristics in designing the network structure which may improve the non-linear learning performance. Experimental results show that with the basic features of a hierarchical phrase-based machine translation system, our method produce translations that are better than a linear model.Comment: submitted to a conferenc
    • 

    corecore