616 research outputs found

    Enrichment of Oesophageal Speech: Voice Conversion with Duration-Matched Synthetic Speech as Target

    Get PDF
    Pathological speech such as Oesophageal Speech (OS) is difficult to understand due to the presence of undesired artefacts and lack of normal healthy speech characteristics. Modern speech technologies and machine learning enable us to transform pathological speech to improve intelligibility and quality. We have used a neural network based voice conversion method with the aim of improving the intelligibility and reducing the listening effort (LE) of four OS speakers of varying speaking proficiency. The novelty of this method is the use of synthetic speech matched in duration with the source OS as the target, instead of parallel aligned healthy speech. We evaluated the converted samples from this system using a collection of Automatic Speech Recognition systems (ASR), an objective intelligibility metric (STOI) and a subjective test. ASR evaluation shows that the proposed system had significantly better word recognition accuracy compared to unprocessed OS, and baseline systems which used aligned healthy speech as the target. There was an improvement of at least 15% on STOI scores indicating a higher intelligibility for the proposed system compared to unprocessed OS, and a higher target similarity in the proposed system compared to baseline systems. The subjective test reveals a significant preference for the proposed system compared to unprocessed OS for all OS speakers, except one who was the least proficient OS speaker in the data set.This project was supported by funding from the European Union’s H2020 research and innovation programme under the MSCA GA 675324 (the ENRICH network: www.enrich-etn.eu (accessed on 25 June 2021)), and the Basque Government (PIBA_2018_1_0035 and IT355-19)

    Acoustic assessment of erygmophonic speech of Moroccan laryngectomized patients

    Get PDF
    Introduction: Acoustic evaluation of alaryngeal voices is among the most prominent issues in speech analysis field. In fact, many methods have been developed to date to substitute the classic perceptual evaluation. The Aim of this study is to present our experience in erygmophonic speech objective assessment and to discuss the most widely used methods of acoustic speech appraisal. through a prospective case-control study we have measured acoustic parameters of speech quality during one year of erygmophonic rehabilitation therapy of Moroccan laryngectomized patients. Methods: We have assessed acoustic parameters of erygmophonic speech samples of eleven laryngectomized patients through the speech rehabilitation therapy. Acoustic parameters were obtained by perturbation analysis method and linear predictive coding algorithms also through the broadband spectrogram. Results: Using perturbation analysis methods, we have found erygmophonic voice to be significantly poorer than normal speech and it exhibits higher formant frequency values. However, erygmophonic voice shows also higher and extremely variable Error values that were greater than the acceptable level. And thus, live a doubt on the reliability of those analytic methods results. Conclusion: Acoustic parameters for objective evaluation of alaryngeal voices should allow a reliable representation of the perceptual evaluation of the quality of speech. This requirement has not been fulfilled by the common methods used so far. Therefore, acoustical assessment of erygmophonic speech needs more investigations

    RESTORE Project: REpair, STOrage and REhabilitation of speech

    Get PDF
    RESTORE is a project aimed to improve the quality of commu-nication for people with difficulties producing speech, provid-ing them with tools and alternative communication services. Atthe same time, progress will be made at the research of tech-niques for restoration and rehabilitation of disordered speech.The ultimate goal of the project is to offer new possibilities inthe rehabilitation and reintegration into society of patients withspeech pathologies, especially those laryngectomised, by de-signing new intervention strategies aimed to favour their com-munication with the environment and ultimately increase theirquality of life.This project has been founded by the Spanish Ministry of Economy and Competitiveness with FEDER support (RESTOREproject, TEC2015-67163-C2-1-R and TEC2015-67163-C2-2-R

    The Application of Clear Speech in Electrolaryngeal Speakers

    Get PDF
    The present work was comprised of a series of experiments that investigated the application of clear speech (CS) in a group of electrolaryngeal (EL) speakers. Three experiments were conducted to assess the impact of CS on three important aspects of EL speech. More specifically, Experiment 1 sought to identify the impact of CS on EL speakers’ word and consonant intelligibility; Experiment 2 examined the influence of CS on the acoustic characteristics of words and vowels in EL speech; and finally, Experiment 3 sought to identify the influence of CS produced by EL speakers on auditory-perceptual ratings by naïve listeners. Results revealed that overall word and consonant intelligibility were minimally different when EL speakers used CS compared to their everyday, ‘habitual’ speech (HS) (Experiment 1). Secondly, EL speakers’ use of CS significantly increased word durations, but did not have a substantial impact on fundamental and formant frequency characteristics of vowels (Experiment 2). Finally, due to the productive changes associated with CS involving a slower rate of speech, over-articulation, and increased mouth-opening, listeners judged EL speech to be significantly less acceptable to listen to when compared to HS. However, no significant effect of speaking condition was noted on listeners’ comfort levels (Experiment 3). Overall, findings suggest that the acoustic deficits in EL speech might be too complex to derive further benefit from CS in the areas of speech intelligibility, the acoustic structure of EL speech and/or auditory-perceptual ratings of EL speakers. Clinical implications and future directions for research are discussed

    Silent-speech enhancement using body-conducted vocal-tract resonance signals

    Get PDF
    The physical characteristics of weak body-conducted vocal-tract resonance signals called non-audible murmur (NAM) and the acoustic characteristics of three sensors developed for detecting these signals have been investigated. NAM signals attenuate 50 dB at 1 kHz; this attenuation consists of 30-dB full-range attenuation due to air-to-body transmission loss and 10 dB/octave spectral decay due to a sound propagation loss within the body. These characteristics agree with the spectral characteristics of measured NAM signals. The sensors have a sensitivity of between 41 and 58 dB [V/Pa] at I kHz, and the mean signal-to-noise ratio of the detected signals was 15 dB. On the basis of these investigations, three types of silent-speech enhancement systems were developed: (1) simple, direct amplification of weak vocal-tract resonance signals using a wired urethane-elastomer NAM microphone, (2) simple, direct amplification using a wireless urethane-elastomer-duplex NAM microphone, and (3) transformation of the weak vocal-tract resonance signals sensed by a soft-silicone NAM microphone into whispered speech using statistical conversion. Field testing of the systems showed that they enable voice impaired people to communicate verbally using body-conducted vocal-tract resonance signals. Listening tests demonstrated that weak body-conducted vocal-tract resonance sounds can be transformed into intelligible whispered speech sounds. Using these systems, people with voice impairments can re-acquire speech communication with less effort. (C) 2009 Elsevier B.V. All rights reserved.ArticleSPEECH COMMUNICATION. 52(4):301-313 (2010)journal articl

    Oesophageal speech: enrichment and evaluations

    Get PDF
    167 p.After a laryngectomy (i.e. removal of the larynx) a patient can no more speak in a healthy laryngeal voice. Therefore, they need to adopt alternative methods of speaking such as oesophageal speech. In this method, speech is produced using swallowed air and the vibrations of the pharyngo-oesophageal segment, which introduces several undesired artefacts and an abnormal fundamental frequency. This makes oesophageal speech processing difficult compared to healthy speech, both auditory processing and signal processing. The aim of this thesis is to find solutions to make oesophageal speech signals easier to process, and to evaluate these solutions by exploring a wide range of evaluation metrics.First, some preliminary studies were performed to compare oesophageal speech and healthy speech. This revealed significantly lower intelligibility and higher listening effort for oesophageal speech compared to healthy speech. Intelligibility scores were comparable for familiar and non-familiar listeners of oesophageal speech. However, listeners familiar with oesophageal speech reported less effort compared to non-familiar listeners. In another experiment, oesophageal speech was reported to have more listening effort compared to healthy speech even though its intelligibility was comparable to healthy speech. On investigating neural correlates of listening effort (i.e. alpha power) using electroencephalography, a higher alpha power was observed for oesophageal speech compared to healthy speech, indicating higher listening effort. Additionally, participants with poorer cognitive abilities (i.e. working memory capacity) showed higher alpha power.Next, using several algorithms (preexisting as well as novel approaches), oesophageal speech was transformed with the aim of making it more intelligible and less effortful. The novel approach consisted of a deep neural network based voice conversion system where the source was oesophageal speech and the target was synthetic speech matched in duration with the source oesophageal speech. This helped in eliminating the source-target alignment process which is particularly prone to errors for disordered speech such as oesophageal speech. Both speaker dependent and speaker independent versions of this system were implemented. The outputs of the speaker dependent system had better short term objective intelligibility scores, automatic speech recognition performance and listener preference scores compared to unprocessed oesophageal speech. The speaker independent system had improvement in short term objective intelligibility scores but not in automatic speech recognition performance. Some other signal transformations were also performed to enhance oesophageal speech. These included removal of undesired artefacts and methods to improve fundamental frequency. Out of these methods, only removal of undesired silences had success to some degree (1.44 \% points improvement in automatic speech recognition performance), and that too only for low intelligibility oesophageal speech.Lastly, the output of these transformations were evaluated and compared with previous systems using an ensemble of evaluation metrics such as short term objective intelligibility, automatic speech recognition, subjective listening tests and neural measures obtained using electroencephalography. Results reveal that the proposed neural network based system outperformed previous systems in improving the objective intelligibility and automatic speech recognition performance of oesophageal speech. In the case of subjective evaluations, the results were mixed - some positive improvement in preference scores and no improvement in speech intelligibility and listening effort scores. Overall, the results demonstrate several possibilities and new paths to enrich oesophageal speech using modern machine learning algorithms. The outcomes would be beneficial to the disordered speech community

    Using Visual Feedback to Enhance Intonation Control within Electrolaryngeal Speech

    Get PDF
    This study evaluated the effectiveness of visual feedback in facilitating pitch control using a pressure sensitive electrolarynx (EL). This proof-of-concept pilot study was a single-subject design that included two healthy adults (1 female aged 23;6 years old, and 1 male aged 67;0 years old). Both participants were provided with visual feedback over two consecutive weeks. Changes in pitch and force control accuracy over 4 hours were analyzed. The results demonstrated that both participants showed an improvement in force control accuracy from the first to the last training session. The results of this proof-of-concept study are a preliminary step towards the development of a clinical training protocol for the use of a pressure sensitive EL. Further, these results highlight the importance of developing a clinically relevant tool for the improvement of a laryngectomee’s quality of life postlaryngectomy

    Diagnosis and Management of Oropharyngeal Dysphagia and Its Nutritional and Respiratory Complications in the Elderly

    Get PDF
    Oropharyngeal dysphagia is a major complaint among older people. Dysphagia may cause two types of complications in these patients: (a) a decrease in the efficacy of deglutition leading to malnutrition and dehydration, (b) a decrease in deglutition safety, leading to tracheobronchial aspiration which results in aspiration pneumonia and can lead to death. Clinical screening methods should be used to identify older people with oropharyngeal dysphagia and to identify those patients who are at risk of aspiration. Videofluoroscopy (VFS) is the gold standard to study the oral and pharyngeal mechanisms of dysphagia in older patients. Up to 30% of older patients with dysphagia present aspiration—half of them without cough, and 45%, oropharyngeal residue; and 55% older patients with dysphagia are at risk of malnutrition. Treatment with dietetic changes in bolus volume and viscosity, as well as rehabilitation procedures can improve deglutition and prevent nutritional and respiratory complications in older patients. Diagnosis and management of oropharyngeal dysphagia need a multidisciplinary approach

    Acoustic measurement of overall voice quality in sustained vowels and continuous speech

    Get PDF
    Measurement of dysphonia severity involves auditory-perceptual evaluations and acoustic analyses of sound waves. Meta-analysis of proportional associations between these two methods showed that many popular perturbation metrics and noise-to-harmonics and others ratios do not yield reasonable results. However, this meta-analysis demonstrated that the validity of specific autocorrelation- and cepstrum-based measures was much more convincing, and appointed ‘smoothed cepstral peak prominence’ as the most promising metric of dysphonia severity. Original research confirmed this inferiority of perturbation measures and superiority of cepstral indices in dysphonia measurement of laryngeal-vocal and tracheoesophageal voice samples. However, to be truly representative for daily voice use patterns, measurement of overall voice quality is ideally founded on the analysis of sustained vowels ánd continuous speech. A customized method for including both sample types and calculating the multivariate Acoustic Voice Quality Index (i.e., AVQI), was constructed for this purpose. Original study of the AVQI revealed acceptable results in terms of initial concurrent validity, diagnostic precision, internal and external cross-validity and responsiveness to change. It thus was concluded that the AVQI can track changes in dysphonia severity across the voice therapy process. There are many freely and commercially available computer programs and systems for acoustic metrics of dysphonia severity. We investigated agreements and differences between two commonly available programs (i.e., Praat and Multi-Dimensional Voice Program) and systems. The results indicated that clinicians better not compare frequency perturbation data across systems and programs and amplitude perturbation data across systems. Finally, acoustic information can also be utilized as a biofeedback modality during voice exercises. Based on a systematic literature review, it was cautiously concluded that acoustic biofeedback can be a valuable tool in the treatment of phonatory disorders. When applied with caution, acoustic algorithms (particularly cepstrum-based measures and AVQI) have merited a special role in assessment and/or treatment of dysphonia severity
    corecore