2 research outputs found

    Statistical Angular Error-Based Triangulation for Efficient and Accurate Multi-View Scene Reconstruction

    Get PDF
    This paper presents a framework for N-view triangulation of scene points, which improves processing time and final reprojection error with respect to standard methods, such as linear triangulation. The framework introduces an angular error-based cost function, which is robust to outliers and inexpensive to compute, and designed such that simple adaptive gradient descent can be applied for convergence. Our method also presents a statistical sampling component based on confidence levels, that reduces the number of rays to be used for triangulation of a given feature track. It is shown how the statistical component yields a meaningful yet much reduced set of representative rays for triangulation, and how the application of the cost function on the reduced sample can efficiently yield faster and more accurate solutions. Results are demonstrated on real and synthetic data, where it is proven to significantly increase the speed of triangulation and optimize reprojection error in most cases. This makes it especially attractive for efficient triangulation of large scenes given the speed and low memory requirements

    3D surface reconstruction for lower limb prosthetic model using modified radon transform

    Get PDF
    Computer vision has received increased attention for the research and innovation on three-dimensional surface reconstruction with aim to obtain accurate results. Although many researchers have come up with various novel solutions and feasibility of the findings, most require the use of sophisticated devices which is computationally expensive. Thus, a proper countermeasure is needed to resolve the reconstruction constraints and create an algorithm that is able to do considerably fast reconstruction by giving attention to devices equipped with appropriate specification, performance and practical affordability. This thesis describes the idea to realize three-dimensional surface of the residual limb models by adopting the technique of tomographic imaging coupled with the strategy based on multiple-views from a digital camera and a turntable. The surface of an object is reconstructed from uncalibrated two-dimensional image sequences of thirty-six different projections with the aid of Radon transform algorithm and shape-from-silhouette. The results show that the main objective to reconstruct three-dimensional surface of lower limb model has been successfully achieved with reasonable accuracy as the starting point to reconstruct three-dimensional surface and extract digital reading of an amputated lower limb model where the maximum percent error obtained from the computation is approximately 3.3 % for the height whilst 7.4%, 7.9% and 8.1% for the diameters at three specific heights of the objects. It can be concluded that the reconstruction of three-dimensional surface for the developed method is particularly dependent to the effects the silhouette generated where high contrast two-dimensional images contribute to higher accuracy of the silhouette extraction. The advantage of the concept presented in this thesis is that it can be done with simple experimental setup and the reconstruction of three-dimensional model neither involves expensive equipment nor require any service by an expert to handle sophisticated mechanical scanning system
    corecore