35,492 research outputs found

    An efficient surrogate model for emulation and physics extraction of large eddy simulations

    Full text link
    In the quest for advanced propulsion and power-generation systems, high-fidelity simulations are too computationally expensive to survey the desired design space, and a new design methodology is needed that combines engineering physics, computer simulations and statistical modeling. In this paper, we propose a new surrogate model that provides efficient prediction and uncertainty quantification of turbulent flows in swirl injectors with varying geometries, devices commonly used in many engineering applications. The novelty of the proposed method lies in the incorporation of known physical properties of the fluid flow as {simplifying assumptions} for the statistical model. In view of the massive simulation data at hand, which is on the order of hundreds of gigabytes, these assumptions allow for accurate flow predictions in around an hour of computation time. To contrast, existing flow emulators which forgo such simplications may require more computation time for training and prediction than is needed for conducting the simulation itself. Moreover, by accounting for coupling mechanisms between flow variables, the proposed model can jointly reduce prediction uncertainty and extract useful flow physics, which can then be used to guide further investigations.Comment: Submitted to JASA A&C

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Software Challenges For HL-LHC Data Analysis

    Full text link
    The high energy physics community is discussing where investment is needed to prepare software for the HL-LHC and its unprecedented challenges. The ROOT project is one of the central software players in high energy physics since decades. From its experience and expectations, the ROOT team has distilled a comprehensive set of areas that should see research and development in the context of data analysis software, for making best use of HL-LHC's physics potential. This work shows what these areas could be, why the ROOT team believes investing in them is needed, which gains are expected, and where related work is ongoing. It can serve as an indication for future research proposals and cooperations
    • …
    corecore