139,297 research outputs found

    Boosted Statistical Mechanics

    Full text link
    Based on the fundamental principles of Relativistic Quantum Mechanics, we give a rigorous, but completely elementary, proof of the relation between fundamental observables of a statistical system when measured relatively to two inertial reference frames, connected by a Lorentz transformation.Comment: 8 page

    Hamiltonian statistical mechanics

    Full text link
    A framework for statistical-mechanical analysis of quantum Hamiltonians is introduced. The approach is based upon a gradient flow equation in the space of Hamiltonians such that the eigenvectors of the initial Hamiltonian evolve toward those of the reference Hamiltonian. The nonlinear double-bracket equation governing the flow is such that the eigenvalues of the initial Hamiltonian remain unperturbed. The space of Hamiltonians is foliated by compact invariant subspaces, which permits the construction of statistical distributions over the Hamiltonians. In two dimensions, an explicit dynamical model is introduced, wherein the density function on the space of Hamiltonians approaches an equilibrium state characterised by the canonical ensemble. This is used to compute quenched and annealed averages of quantum observables.Comment: 8 pages, 2 figures, references adde

    Equilibrium Statistical Mechanics

    Full text link
    An introductory review of Classical Statistical MechanicsComment: 56 page

    Semiclassical Statistical Mechanics

    Get PDF
    We use a semiclassical approximation to derive the partition function for an arbitrary potential in one-dimensional Quantum Statistical Mechanics, which we view as an example of finite temperature scalar Field Theory at a point. We rely on Catastrophe Theory to analyze the pattern of extrema of the corresponding path-integral. We exhibit the propagator in the background of the different extrema and use it to compute the fluctuation determinant and to develop a (nonperturbative) semiclassical expansion which allows for the calculation of correlation functions. We discuss the examples of the single and double-well quartic anharmonic oscillators, and the implications of our results for higher dimensions.Comment: Invited talk at the La Plata meeting on `Trends in Theoretical Physics', La Plata, April, 1997; 14 pages + 5 ps figures. Some cosmetical modifications, and addition of some references which were missing in the previous versio

    Statistical mechanics of voting

    Full text link
    Decision procedures aggregating the preferences of multiple agents can produce cycles and hence outcomes which have been described heuristically as `chaotic'. We make this description precise by constructing an explicit dynamical system from the agents' preferences and a voting rule. The dynamics form a one dimensional statistical mechanics model; this suggests the use of the topological entropy to quantify the complexity of the system. We formulate natural political/social questions about the expected complexity of a voting rule and degree of cohesion/diversity among agents in terms of random matrix models---ensembles of statistical mechanics models---and compute quantitative answers in some representative cases.Comment: 9 pages, plain TeX, 2 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages

    General relativistic statistical mechanics

    Full text link
    Understanding thermodynamics and statistical mechanics in the full general relativistic context is an open problem. I give tentative definitions of equilibrium state, mean values, mean geometry, entropy and temperature, which reduce to the conventional ones in the non-relativistic limit, but remain valid for a general covariant theory. The formalism extends to quantum theory. The construction builds on the idea of thermal time, on a notion of locality for this time, and on the distinction between global and local temperature. The last is the temperature measured by a local thermometer, and is given by kT = hbar d tau/ds, with k the Boltzmann constant, hbar the Planck constant, ds proper time and d tau the equilibrium thermal time.Comment: A tentative second step in the thermal time direction, 10 years after the paper with Connes. The aim is the full thermodynamics of gravity. The language of the paper is a bit technical: look at the Appendix first (expanded in version 2

    Statistical mechanics of money

    Full text link
    In a closed economic system, money is conserved. Thus, by analogy with energy, the equilibrium probability distribution of money must follow the exponential Gibbs law characterized by an effective temperature equal to the average amount of money per economic agent. We demonstrate how the Gibbs distribution emerges in computer simulations of economic models. Then we consider a thermal machine, in which the difference of temperatures allows one to extract a monetary profit. We also discuss the role of debt, and models with broken time-reversal symmetry for which the Gibbs law does not hold.Comment: 7 pages, 5 figures, RevTeX. V.4: final version accepted to Eur. Phys. J. B: few stylistic revisions and additional reference
    • …
    corecore