24 research outputs found

    Quality of Experience and Adaptation Techniques for Multimedia Communications

    Get PDF
    The widespread use of multimedia services on the World Wide Web and the advances in end-user portable devices have recently increased the user demands for better quality. Moreover, providing these services seamlessly and ubiquitously on wireless networks and with user mobility poses hard challenges. To meet these challenges and fulfill the end-user requirements, suitable strategies need to be adopted at both application level and network level. At the application level rate and quality have to be adapted to time-varying bandwidth limitations, whereas on the network side a mechanism for efficient use of the network resources has to be implemented, to provide a better end-user Quality of Experience (QoE) through better Quality of Service (QoS). The work in this thesis addresses these issues by first investigating multi-stream rate adaptation techniques for Scalable Video Coding (SVC) applications aimed at a fair provision of QoE to end-users. Rate Distortion (R-D) models for real-time and non real-time video streaming have been proposed and a rate adaptation technique is also developed to minimize with fairness the distortion of multiple videos with difference complexities. To provide resiliency against errors, the effect of Unequal Error protection (UXP) based on Reed Solomon (RS) encoding with erasure correction has been also included in the proposed R-D modelling. Moreover, to improve the support of QoE at the network level for multimedia applications sensitive to delays, jitters and packet drops, a technique to prioritise different traffic flows using specific QoS classes within an intermediate DiffServ network integrated with a WiMAX access system is investigated. Simulations were performed to test the network under different congestion scenarios

    Recent Advances in Region-of-interest Video Coding

    Get PDF

    Optimized algorithms for multimedia streaming

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A Study on the Usage of Cross-Layer Power Control and Forward Error Correction for Embedded Video Transmission over Wireless Links

    Get PDF
    Cross-layering is a design paradigm for overcoming the limitations deriving from the ISO/OSI layering principle, thus improving the performance of communications in specific scenarios, such as wireless multimedia communications. However, most available solutions are based on empirical considerations, and do not provide a theoretical background supporting such approaches. The paper aims at providing an analytical framework for the study of single-hop video delivery over a wireless link, enabling cross-layer interactions for performance optimization using power control and FEC and providing a useful tool to determine the potential gain deriving from the employment of such design paradigm. The analysis is performed using rate-distortion information of an embedded video bitstream jointly with a Lagrangian power minimization approach. Simulation results underline that cross-layering can provide relevant improvement in specific environments and that the proposed approach is able to capitalize on the advantage deriving from its deployment

    Video Encoder Optimization for Real - Time Communication

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    3D multiple description coding for error resilience over wireless networks

    Get PDF
    Mobile communications has gained a growing interest from both customers and service providers alike in the last 1-2 decades. Visual information is used in many application domains such as remote health care, video –on demand, broadcasting, video surveillance etc. In order to enhance the visual effects of digital video content, the depth perception needs to be provided with the actual visual content. 3D video has earned a significant interest from the research community in recent years, due to the tremendous impact it leaves on viewers and its enhancement of the user’s quality of experience (QoE). In the near future, 3D video is likely to be used in most video applications, as it offers a greater sense of immersion and perceptual experience. When 3D video is compressed and transmitted over error prone channels, the associated packet loss leads to visual quality degradation. When a picture is lost or corrupted so severely that the concealment result is not acceptable, the receiver typically pauses video playback and waits for the next INTRA picture to resume decoding. Error propagation caused by employing predictive coding may degrade the video quality severely. There are several ways used to mitigate the effects of such transmission errors. One widely used technique in International Video Coding Standards is error resilience. The motivation behind this research work is that, existing schemes for 2D colour video compression such as MPEG, JPEG and H.263 cannot be applied to 3D video content. 3D video signals contain depth as well as colour information and are bandwidth demanding, as they require the transmission of multiple high-bandwidth 3D video streams. On the other hand, the capacity of wireless channels is limited and wireless links are prone to various types of errors caused by noise, interference, fading, handoff, error burst and network congestion. Given the maximum bit rate budget to represent the 3D scene, optimal bit-rate allocation between texture and depth information rendering distortion/losses should be minimised. To mitigate the effect of these errors on the perceptual 3D video quality, error resilience video coding needs to be investigated further to offer better quality of experience (QoE) to end users. This research work aims at enhancing the error resilience capability of compressed 3D video, when transmitted over mobile channels, using Multiple Description Coding (MDC) in order to improve better user’s quality of experience (QoE). Furthermore, this thesis examines the sensitivity of the human visual system (HVS) when employed to view 3D video scenes. The approach used in this study is to use subjective testing in order to rate people’s perception of 3D video under error free and error prone conditions through the use of a carefully designed bespoke questionnaire.EThOS - Electronic Theses Online ServicePetroleum Technology Development Fund (PTDF)GBUnited Kingdo

    Adaptive video delivery using semantics

    Get PDF
    The diffusion of network appliances such as cellular phones, personal digital assistants and hand-held computers has created the need to personalize the way media content is delivered to the end user. Moreover, recent devices, such as digital radio receivers with graphics displays, and new applications, such as intelligent visual surveillance, require novel forms of video analysis for content adaptation and summarization. To cope with these challenges, we propose an automatic method for the extraction of semantics from video, and we present a framework that exploits these semantics in order to provide adaptive video delivery. First, an algorithm that relies on motion information to extract multiple semantic video objects is proposed. The algorithm operates in two stages. In the first stage, a statistical change detector produces the segmentation of moving objects from the background. This process is robust with regard to camera noise and does not need manual tuning along a sequence or for different sequences. In the second stage, feedbacks between an object partition and a region partition are used to track individual objects along the frames. These interactions allow us to cope with multiple, deformable objects, occlusions, splitting, appearance and disappearance of objects, and complex motion. Subsequently, semantics are used to prioritize visual data in order to improve the performance of adaptive video delivery. The idea behind this approach is to organize the content so that a particular network or device does not inhibit the main content message. Specifically, we propose two new video adaptation strategies. The first strategy combines semantic analysis with a traditional frame-based video encoder. Background simplifications resulting from this approach do not penalize overall quality at low bitrates. The second strategy uses metadata to efficiently encode the main content message. The metadata-based representation of object's shape and motion suffices to convey the meaning and action of a scene when the objects are familiar. The impact of different video adaptation strategies is then quantified with subjective experiments. We ask a panel of human observers to rate the quality of adapted video sequences on a normalized scale. From these results, we further derive an objective quality metric, the semantic peak signal-to-noise ratio (SPSNR), that accounts for different image areas and for their relevance to the observer in order to reflect the focus of attention of the human visual system. At last, we determine the adaptation strategy that provides maximum value for the end user by maximizing the SPSNR for given client resources at the time of delivery. By combining semantic video analysis and adaptive delivery, the solution presented in this dissertation permits the distribution of video in complex media environments and supports a large variety of content-based applications
    corecore