820,749 research outputs found
Non-linear Learning for Statistical Machine Translation
Modern statistical machine translation (SMT) systems usually use a linear
combination of features to model the quality of each translation hypothesis.
The linear combination assumes that all the features are in a linear
relationship and constrains that each feature interacts with the rest features
in an linear manner, which might limit the expressive power of the model and
lead to a under-fit model on the current data. In this paper, we propose a
non-linear modeling for the quality of translation hypotheses based on neural
networks, which allows more complex interaction between features. A learning
framework is presented for training the non-linear models. We also discuss
possible heuristics in designing the network structure which may improve the
non-linear learning performance. Experimental results show that with the basic
features of a hierarchical phrase-based machine translation system, our method
produce translations that are better than a linear model.Comment: submitted to a conferenc
Encrypted statistical machine learning: new privacy preserving methods
We present two new statistical machine learning methods designed to learn on
fully homomorphic encrypted (FHE) data. The introduction of FHE schemes
following Gentry (2009) opens up the prospect of privacy preserving statistical
machine learning analysis and modelling of encrypted data without compromising
security constraints. We propose tailored algorithms for applying extremely
random forests, involving a new cryptographic stochastic fraction estimator,
and na\"{i}ve Bayes, involving a semi-parametric model for the class decision
boundary, and show how they can be used to learn and predict from encrypted
data. We demonstrate that these techniques perform competitively on a variety
of classification data sets and provide detailed information about the
computational practicalities of these and other FHE methods.Comment: 39 page
Recommended from our members
Machine learning phases in statistical physics
Conventionally, the study of phases in statistical mechan- ics is performed with the help of random sampling tools. Among the most powerful are Monte Carlo simulations consisting of a stochastic importance sampling over state space and evaluation of estimators for physical quantities. The ability of modern machine learning techniques to classify, identify, or in- terpret massive data sets provides a complementary paradigm to the above approach to analyze the exponentially large number of states in statistical physics. In this report, it is demonstrated by application on Ising-type models that deep learning has potential wide applications in solving many-body statis- tical physics problems. In application of supervised learning, we showed that the feed-forward neural network can identify phases and phase transitions in the ferromagnetic Ising model and the convolutional neural network (CNN) is extremely powerful in classifying T = 0 and T = ∞ phases in the Ising gauge model; In application of unsupervised learning, we illustrated that a deep auto-encoder constructed by stacked restricted Boltzmann machines (RBM)
is closely related to the renormalization group (RG) method well understood in modern physics and our reconstruction of Ising spin configurations in the ferromagnetic Ising model is similar to the hand-written digits reconstruction.Statistic
- …
