
Copyright

by

Qi Chen

2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211331661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Report Committee for Qi Chen
certifies that this is the approved version of the following report:

Machine Learning Phases in Statistical Physics

APPROVED BY

SUPERVISING COMMITTEE:

Timothy H. Keitt, Supervisor

Gregory A. Fiete

Machine Learning Phases in Statistical Physics

by

Qi Chen

REPORT

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN STATISTICS

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2017

Dedicated to all authors, who took the time to write their knowledge down.

Acknowledgments

I wish to thank Dr. Tim Keitt for supervising this thesis.

I’d also like to thank Dr. Gregory A. Fiete for supervising my Ph.D

work and being in support of my concurrent M.S. in statistics.

I acknowledge Juan Felipe Carrasquilla Alvarez for his very helpful

discussion closely related to this report.

Thanks to Vicki, Keller and all my colleagues in Department of Statis-

tics and Department of Physics for their help.

Lastly, my sincere love for my parents.

v

Machine Learning Phases in Statistical Physics

Qi Chen, M. S. Stat.

The University of Texas at Austin, 2017

Supervisor: Timothy H. Keitt

ABSTRACT Conventionally, the study of phases in statistical mechan-

ics is performed with the help of random sampling tools. Among the most

powerful are Monte Carlo simulations consisting of a stochastic importance

sampling over state space and evaluation of estimators for physical quantities.

The ability of modern machine learning techniques to classify, identify, or in-

terpret massive data sets provides a complementary paradigm to the above

approach to analyze the exponentially large number of states in statistical

physics. In this report, it is demonstrated by application on Ising-type models

that deep learning has potential wide applications in solving many-body statis-

tical physics problems. In application of supervised learning, we showed that

the feed-forward neural network can identify phases and phase transitions in

the ferromagnetic Ising model and the convolutional neural network (CNN) is

extremely powerful in classifying T = 0 and T =∞ phases in the Ising gauge

model; In application of unsupervised learning, we illustrated that a deep

auto-encoder constructed by stacked restricted Boltzmann machines (RBM)

vi

is closely related to the renormalization group (RG) method well understood

in modern physics and our reconstruction of Ising spin configurations in the

ferromagnetic Ising model is similar to the hand-written digits reconstruction.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables x

List of Figures xi

Chapter 1. Introduction 1

1.1 Statistical Physics . 1

1.2 Machine Learning . 3

1.3 Deep Learning in statistical physics 4

Chapter 2. Monte Carlo methods in statistical physics 7

2.1 Importance sampling through Markov chains 7

2.2 Monte Carlo for the Ising model 9

2.3 Monte Carlo for the Ising lattice gauge model 11

Chapter 3. Deep learning models 16

3.1 Feed-forward neural network 16

3.1.1 Logistic regression . 17

3.1.2 Multi-class classification 18

3.1.3 Multi-layer Perceptron 18

3.1.4 Softmax and cost function 19

3.1.5 Activation functions . 19

3.1.6 Backpropagation . 20

3.2 Convolutional neural network 21

3.2.1 The Convolution Operation 22

3.2.2 Motivation . 22

viii

3.2.3 Pooling . 23

3.2.4 Full CNN Model . 23

3.3 Restricted Boltzmann Machine 24

3.3.1 Bernoulli Restricted Boltzmann machines 25

3.3.2 Maximum Likelihood Learning 25

3.3.3 Contrastive divergence 26

3.4 Deep auto-encoder . 27

Chapter 4. Data-preparation and model specification 33

4.1 Ferromagnetic Ising model . 33

4.1.1 Data . 33

4.1.2 Model . 34

4.2 Ising gauge model . 35

4.2.1 Data . 35

4.2.2 Model . 36

Chapter 5. Results 37

5.1 Feed-forward ANN on ferromagnetic Ising model 37

5.2 Deep auto-encoder on ferromagnetic Ising model 39

5.3 CNN on Ising gauge model . 42

Chapter 6. Conclusion and discussion 45

Appendix 47

Appendix 1. Sample code 48

1.1 Keras implementation of feed-forward ANN in ferromagnetic
Ising model . 48

1.2 Keras implementation of CNN in Ising gauge model 52

Bibliography 60

Vita 63

ix

List of Tables

4.1 Sample data frame for L = 20 Ising model. 34

5.1 Training and test accuracy for ferromagnetic Ising model. . . . 37

x

List of Figures

2.1 Ferromagnetic Ising model on the square lattice: Each spin is
defined on the site of the lattice and takes binary values from
{−1, 1}. 10

2.2 Ising gauge model on the square lattice: Each spin is defined
on the link of the lattice and takes binary values from {−1, 1}. 12

2.3 Non-local flux insertion along x or y direction. 14

3.1 The architecture of a feed-forward artificial neural network with
a single hidden layer. The output probabilities of each neuron in
the hidden layer are served as inputs for the output layer. (This
figure was clipped from online course materials at coursera.com) 30

3.2 The architecture of CNN. The input is a colored picture with a
2d grid of pixels. Two convolution+pooling layers are used to
convert pixels into 1d input data for the fully connected layer
as in the feed-forward neural network[1]. 31

3.3 The architecture of restricted Boltzmann machine: the hidden
units on the top are connected to the visible units at the bottom.
There is no internal connections between units in the hidden
layer[2]. 31

3.4 The architectures of auto-encoders[3]: (a) Auto-encoder with
a single hidden layer and the sigmoid activation function. (b)
Deep auto-encoder with stacked RBMs as encoding layers and
the decoding layers have the reversed dimensions. 32

5.1 The output layer of our trained feed-forward neural network
model averaged over a test set as a function of T/J for the
square-lattice ferromagnetic Ising model of size L = 10, 20, 30, 40, 60. 38

5.2 The plot for finite size scaling of the critical temperature Tc/J ∼
1/L. The red line is the fitted result. 39

5.3 Visualization of effective receptive fields for (a) 100 spins in the
middle layer, (b) 25 spins in the top layer. Each 40 by 40 pixel
image depicts the effective receptive field of one of the spins in
the hidden units. 40

xi

5.4 Loss per data point in the fine tuning stage as a function of
number of epochs trained for the deep auto-encoder. The green
curve corresponds to random initialization in the model param-
eter. The blue curve is initialized with pre-trained model pa-
rameters. 42

5.5 Reconstructed spin configurations (lower) compared to the cor-
responding raw configurations (upper). 43

5.6 The spin flip transformations on the links in x direction every
m plaquettes for L = 20, where m = 2 for the upper row and
m = 4 for the lower row. From left to right: spin configurations
before the transformation, spin configurations after the trans-
formation, spins changed under the transformation indicated by
the white spots. 44

xii

Chapter 1

Introduction

In this chapter, we introduce the basic knowledge about statistical

physics[4] and machine learning[5], which motivates our work on specific mod-

els. In 1.1 we present the basic knowledge of statistical physics. In 1.2 we

introduce the basics of machine learning. In 1.3, we address our motivation

for the work on deep learning application in statistical physics and the orga-

nization of following chapters.

1.1 Statistical Physics

Statistical physics is a branch of physics that uses methods of proba-

bility theory and statistics, and particularly the mathematical tools and nu-

merical techniques for dealing with large populations and approximations, in

solving physical problems. It can describe a wide variety of fields with an

inherently stochastic nature.

In particular, statistical mechanics develops the phenomenological re-

sults of thermodynamics from a probabilistic examination of the underlying

microscopic systems. It provides a framework for relating the microscopic

properties of individual atoms and molecules to the macroscopic or bulk prop-

1

erties of materials that can be observed in every day life, therefore explain-

ing thermodynamics as a natural result of statistics, classical mechanics, and

quantum mechanics at the microscopic level.

One of the most important equations in Statistical mechanics is the

definition of the partition function Z, which is essentially a weighted sum of

all possible states q available to a system:

Z =
∑
q

exp(−E(q)/kBT), (1.1)

where kB is the Boltzmann constant, T is temperature and E(q) is energy of

state q.The probability of a given state q is usually decided by the energy of

state q and also the temperature:

P (q) =
exp(−E(q)/kBT)

Z
. (1.2)

The macroscopic observable O’ s are weighted averages of microscopic degrees

of freedoms associated with q’s:

< O >=
∑
q

P (q)O(q). (1.3)

In classical systems, phases of matters are characterized by so called order

parameters–the weighted averages of particular choices of physical observ-

ables, e.g. magnetic moment. Phase transitions happen when there is an

abrupt change in the order parameter as a function of temperature. Although

some phase transition problems in statistical physics can be solved analytically

using approximations and expansions, most current research utilizes the large

2

processing power of modern computers to simulate or approximate solutions.

A common approach to statistical problems is to use a Monte Carlo simulation

to yield insight into the dynamics of a complex system.

1.2 Machine Learning

Machine learning lives in the cross field between statistics and computer

science, exploring the study and construction of algorithms that can learn from

and make predictions on data. Machine learning is employed in a range of

computing tasks where designing and programming explicit algorithms with

good performance is difficult or infeasible; example applications include email

filtering, detection of network intruders or malicious insiders working towards

a data breach, optical character recognition (OCR), learning to rank, and

computer vision.

Machine learning can be supervised or unsupervised depending on whether

the desired outputs are given or not. The goal of supervised learning is to learn

a general rule that maps inputs to outputs, whereas unsupervised learning can

be used to discover hidden patterns or as a means towards an end such as fea-

ture selection. Within the field of data science, machine learning is a method

used to devise complex models and algorithms that lend themselves to predic-

tion.

In particular, deep learning is the application to learning tasks of arti-

ficial neural networks (ANNs) that contain more than one hidden layer. It is

a class of machine learning algorithms that:

3

1. use a cascade of many layers of nonlinear processing units for feature

extraction and transformation. Each successive layer uses the output

from the previous layer as input. The algorithms may be supervised or

unsupervised and applications include pattern analysis (unsupervised)

and classification (supervised).

2. are based on the (unsupervised) learning of multiple levels of features or

representations of the data. Higher level features are derived from lower

level features to form a hierarchical representation.

3. are part of the broader machine learning field of learning representations

of data.

4. learn multiple levels of representations that correspond to different levels

of abstraction; the levels form a hierarchy of concepts.

Deep learning has been a rising part of machine learning methods based

on learning data representations, as opposed to task specific algorithms. The

architectures of deep learning includes deep neural networks, deep belief net-

works and recurrent neural networks that having been widely applied to fields

including computer vision, speech recognition, natural language processing,

etc.

1.3 Deep Learning in statistical physics

Conventionally, the study of phases in statistical mechanics is per-

formed with the help of tools that have been carefully designed to elucidate

4

the underlying configurations of various states. Among the most powerful

are Monte Carlo[15] simulations consisting of a stochastic importance sam-

pling over state space, and the evaluation of estimators for physical quantities

calculated from samples. Machine learning, already explored as a tool in

condensed-matter research[7, 6, 13, 12, 9, 16, 14], provides physicists a com-

plementary paradigm in analyzing exponentially large data sets embodied in

the state space of statistical physics models. In this report, we closely followed

the work by Juan[7], Pankaj[14] and applied deep learning models in studying

phases of matter based on data sets sampled by Monte Carlo simulations. We

first demonstrated the power of supervised feed-forward artificial neural net-

work (ANN) in the classification of phases in the prototypical example of the

square-lattice ferromagnetic Ising model. Then we turned to a more compli-

cated example of Ising gauge model and examined the ability of convolutional

neural network (CNN) to detect phase transitions through the local constraints

in the flux through a plaquette. Finally, we showcased the power of deep auto-

encoders consisting of multiple layers of restricted Boltzmann machine (RBM)

in reconstructing spin configurations in the microscopic states of ferromagnetic

Ising model close to the critical point of phase transition.

This report is organized as follows. In chapter 2, we introduce the

Markov chain Monte Carlo sampling method with the Metropolis algorithm

and its application in two prototypical statistical physics models: ferromag-

netic Ising model and Ising gauge model. In Chapter 3, feed-forward ANN

and CNN are reviewed and specified in our application. In addition, deep

5

auto-encoders and their building blocks–RBMs are introduced as an ANN for

unsupervised learning. We point out the intimate relationship between renor-

malization group methods and RBM and specified the details of stacked RBMs

in encoding and decoding spin configurations in ferromagnetic Ising models.

In Chapter 4, we elaborate our data preparation process and specify the hyper-

parameters in our models. In Chapter 5 we report our training and testing

results for both supervised and unsupervised learning. Conclusions and further

discussions are made in Chapter 6.

6

Chapter 2

Monte Carlo methods in statistical physics

The Monte Carlo method is a traditional numerical tool for simulating

classical many-particle systems by introducing artificial dynamics based on

’random’ numbers. For our purposes, we will use Monte Carlo sampling to

generate spin configurations data for the Ising type models. We will first

introduce the Metropolis algorithm in the Markov chain Monte Carlo method

and then apply it to both the ferromagnetic Ising model and the Ising gauge

model.

2.1 Importance sampling through Markov chains

In this section, we explain the importance sampling method for clas-

sical many-particle systems in the canonical (N, V, T) ensemble[17]. When

calculating averages in the (N, V, T) ensemble, the configuration X should be

weighted according to the Boltzmann factor

ρ(X) ∝ exp[−βE(X)], β =
1

kBT
(2.1)

This suggests that we apply Monte Carlo integration with importance sam-

pling. However, as the number of configurations with a particular energy in-

creases exponentially, most of the randomly constructed states have very high

7

energy-hence for finite temperature they will be accepted with a vanishingly

small probability and we spend most of our time generating configurations

which are then rejected. As a result, importance sampling becomes very inef-

ficient. To improve efficiency in sampling, the configurations are constructed

through a Markov chain, in which each new configuration X ′ is generated with

a probability distribution depending on the previous configuration X given by

T (X → X ′). Then the probability of having a sequence of objects Xi becomes

PN (X1, X2, . . . , XN) = P1 (X1)T (X1 → X2)T (X2 → X3) . . . T (XN−1 → XN) .

(2.2)

In our problem, we want to generate a Markov chain of system configurations

such that they have a distribution proportional to exp[−βE(X)]. In other

words, we want to find a transition probability T (X → X ′) which leads to

a given stationary density ρ(X). This is achieved by the Metropolis Monte

Carlo method, in which T (X → X ′) is constructed as

T (X → X ′) = ωXX′AXX′ , (2.3)

where ωXX′ is the proposal distribution and AXX′ is the acceptance probability.

As ρ(X) is the stationary distribution, we want

T (X → X ′) ρ(X) = T (X ′ → X) ρ (X ′) . (2.4)

By inserting Eq. (3) into Eq. (4), one finds

ωXX′AXX′ρ(X) = ωX′XAX′Xρ (X ′) ⇒ AXX′

AX′X
=
ωX′Xρ (X ′)

ωXX′ρ(X)
. (2.5)

8

In the Metropolis procedure, the acceptance criterion for an attempted move

X → X ′ is given by

AXX′ = min

{
1,
ωX′Xρ (X ′)

ωXX′ρ(X)

}
(2.6)

2.2 Monte Carlo for the Ising model

The Hamiltonian (i.e. energy) of the ferromagnetic Ising model defined

on the L× L square lattice (Fig. 2.1) is given as:

H = −J
∑
<ij>

Szi S
z
j , (2.7)

where the Ising spins Szi live on the sites of a two-dimensional square lattice

and takes binary values from {−1, 1}. In total, we have N = L× L sites and

2N states. This is a textbook model in classical statistical mechanics which

describes the phase transition from ferromagnetic (FM) phase (| < Szi > | ≈ 1)

at low temperatures to paramagnetic (PM) phase (| < Szi > | ≈ 0) at high

temperatures. In order to formulate the Metropolis procedure, we must make

a choice for ωXX′ . For the two-dimensional Ising model on an L × L square

lattice, we can take

ωXX′ =

{
1 /L2 if X and X ′ differ by one spin

0 otherwise
. (2.8)

In order to generate a trial configuration, one can select a spin at random

and the trial configuration is the present configuration with the selected spin

turned over. The energy difference is given by

∆E (X → X ′) = E (X ′)− E(X). (2.9)

9

Figure 2.1: Ferromagnetic Ising model on the square lattice: Each spin is
defined on the site of the lattice and takes binary values from {−1, 1}.

On the square lattice in two dimension, it is clear that the energy difference

depends only on the number of neighbors which have the same spin as the

selected spin in the old configuration - between 0 and 4. the energy differences

are
∆E (X → X ′) # of neighbors with the same spin

−8J 0
−4J 1

0 2
4J 3
8J 4

 . (2.10)

10

The trial state is accepted with probability:

AXX′ =

{
exp (−β∆E (X → X ′)) if ∆E (X → X ′) > 0

1 else
(2.11)

Since exp (−β∆E (X → X ′)) can assume only five different values, it is advis-

able to store these in an array in order to avoid calculating the exponential

function over and over again. Notice that the average number of steps between

two updates of the same spin is equal to L2. Therefore, the Monte Carlo steps

per spin(MCS) is equal to L2 trials. (Remark: The initial configuration will

be chosen either random or as FM (all spins taking either +1 or −1).) The

specific heat is calculated according to

CV =
1

kBT 2

∂2Log[Z]

∂β2

=
1

kBT 2

[∑
X e
−βH(X)H2(X)∑
X e
−βH(X)

−
(∑

X e
−βH(X)H(X)∑
X e
−βH(X)

)2
]

=
1

kBT 2

[〈
E2
〉
NVT
− 〈E〉2NVT

]
. (2.12)

Similarly, the magnetic susceptibility can be written as

χ = β
[〈
M2
〉
− 〈M〉2

]
. (2.13)

2.3 Monte Carlo for the Ising lattice gauge model

The Hamiltonian for the Ising gauge model[8] (Fig. 2.2) is

H = −J
∑
p

∏
i∈p

σzi , (2.14)

where the Ising spins live on the bonds of a two-dimensional square lattice

with plaquettes p and takes binary values from {−1, 1}. This model has a

11

Figure 2.2: Ising gauge model on the square lattice: Each spin is defined on
the link of the lattice and takes binary values from {−1, 1}.

gauge symmetry, i.e. the Hamiltonian is invariant under the following trans-

formation:

σ̃zij = wiσ
z
ijwj (2.15)

where wi = ±1. We can count the number of states in the Ising gauge theory

on a finite square lattice with periodic boundary condition as follows: If the

lattice has N sites, then it has 2N nearest-neighbor links. Thus there are 22N

different σzij configurations. On the other hand, there are 2N different gauge

transformations, which induces 2N
/

2 different gauge-equivalent classes. If we

12

choose to label those classes by plaquette values, one naively expects that

different plaquette configurations will provide 2N different labels. However,

the plaquette values are not independent under periodic boundary condition.

They satisfy ∏
p

∏
i∈p

σzi = 1 (2.16)

So they only provide 2N
/

2 states. As a result, each plaquette configuration

corresponds to four different states. To see this (Fig. 2.3), we consider the

dashed line along x or y direction where all vertical links are flipped, which

gives rise to the same plaquette configurations but they are gauge inequivalent

because they correspond to inserting a different Z2 flux through the two holes

in the torus. Therefore, 2N
/

2 different flux configurations plus the four-fold

degeneracy allow us to recover 2× 2N states[8]. Similar to FM Ising model, in

order to formulate the Metropolis procedure, we must make a choice for ωXX′ .

Notice that in two dimension, there are 2×N bonds for N sites. Thus

ωXX′ =

{
1/2L2 if X and X ′ differ by one spin on one link

0 else
. (2.17)

The step of generating a trial configuration is again to select a spin at random,

and the trial configuration is the present configuration with the selected spin

turned over. The energy difference is given by

∆E (X → X ′) = E (X ′)− E(X) (2.18)

13

Figure 2.3: Non-local flux insertion along x or y direction.

On the square lattice in two dimension, it is clear that the energy difference

depends only on the neighboring plaquettes flux:
∆E (X → X ′) neighboring plaquettes flux

−4J (−1,−1)
0 (−1, 1) or (1,−1)

4J (1, 1)

 . (2.19)

The trial state is accepted with probability:

AXX′ =

{
exp (−β∆E (X → X ′)) if ∆E (X → X ′) > 0.

1 otherwise.
(2.20)

Since exp [−β∆E (X → X ′)] can assume only 3 different values, it is advisable

to store these in an array in order to avoid calculating the exponential function

over and over again. The average number of steps between two updates of the

14

same spin is equal to 2L2. Therefore, the Monte Carlo steps per spin (MCS)

is equal to 2L2 trials. However, the above procedure will not work for T → 0

corresponding to the strong coupling limit (J → ∞) as a single spin flip will

cost infinite energy. To keep the chain moving, the most natural choice is to

given the system the possibility of performing both single spin flips and local

gauge transformations[18]. The relative number of both types of excitations

may be chosen freely. With this in mind we choose ωXX′ as:

ωXX′ =

s

2L2 X
local→ X ′

2(1−s)
2L2 X

gauge→ X ′

0 otherwise

. (2.21)

Our choice is based on the fact that there are L2 gauge updates and 2L2 single

spin flips.

15

Chapter 3

Deep learning models

In this chapter, we introduce the essential deep learning tools applied

to our models. In 3.1, feed-forward ANN is introduced. In 3.2, we address the

practical aspects of the convolutional neural network without getting bogged

down in the theoretical details. In 3.3, the restricted Boltzmann machine is in-

troduced with contrastive divergence as an approximation in gradient descent.

In 3.4, we illustrate the structure of the deep auto-encoder based on stacked

RBMs and point out the necessity of pre-training.

3.1 Feed-forward neural network

Feedforward ANN (Fig. 3.1) has been widely applied in multi-class clas-

sification problems, which is based upon multiple hidden layers with logistic

hidden units. We first introduce the logistic regression in binary classifica-

tion, then we generalize it to multi-class classification problems. With this

building block, one can construct multi-layer perceptrons in a deep neural

network and the predicted probabilities in the output layer are given by the

softmax function. Alternatively, different activation functions can be used to

construct hidden units. To achieve the minimization of the cost function, we

16

introduce the backpropagation method in evaluating the gradient descent of a

deep neural network.

3.1.1 Logistic regression

The basic model for binary classification is the logistic regression based

on the sigmoid function:

hθ(x) = g(xθ) =
1

1 + e−xθ
, (3.1)

where the input variable x is an n-dimensional vector and θ is the weight vector

for binary classification:

x = (x1, x2, . . . , xn) , θ =

θ1
θ2
...
θn

 , (3.2)

The learning goal is to maximize the log likelihood function:

J(θ) =
m∑
i=1

[
y(i) log hθ

(
x(i)
)

+
(
1− y(i)

)
log
(
1− hθ

(
x(i)
))]

, (3.3)

where the subscript (i) labels the cases from 1 to m. The gradient ascent is

based on

∂J(θ)

∂θj
= −

m∑
i=1

[
hθ
(
x(i)
)
− y(i)

]
x
(i)
j (3.4)

To prevent overfitting for data, one can add L2 regularization to penalize large

magnitude of weights,

J(θ) =
m∑
i=1

[
y(i) log hθ

(
x(i)
)

+
(
1− y(i)

)
log
(
1− hθ

(
x(i)
))]
− λ

2

n∑
j=1

θ2j , (3.5)

17

∂J(θ)

∂θj
=

 −
m∑
i=1

[
hθ
(
x(i)
)
− y(i)

]
x
(i)
j , j = 0

−
m∑
i=1

[
hθ
(
x(i)
)
− y(i)

]
x
(i)
j − λθj, j ≥ 1

, (3.6)

where λ > 0 is the regularization parameter.

3.1.2 Multi-class classification

The logistic regression can be easily generalized to one-vs-all classifi-

cation problems. Suppose we have K classes in our dataset, the model pa-

rameters will be a matrix Θ ∈ RK×(N+1), where each row corresponds to the

learned logistic regression parameters for one class. When training the classi-

fier for class k ∈ {1, ..., K}, one will want a m-dimensional vector of labels y,

where yj ∈ 0, 1 indicates whether the j-th training instance belongs to class

k (yj = 1), or if it belongs to a different class (yj = 0).

3.1.3 Multi-layer Perceptron

Multi-layer Perceptron (MLP) is a supervised learning algorithm that

learns a function f : Rn → RK by training on a dataset, where n is the number

of dimensions for input and K is the number of dimensions for output. Given

a set of features X = {x1, x2, ..., xn} and a target y, it can learn a non-linear

function approximator for either classification or regression. It is different from

the logistic regression, in that between the input and the output layer, there

can be one or more non-linear layers, called hidden layers.

18

3.1.4 Softmax and cost function

If there are more than two classes, the output function would be a vector

of size K(number of classes). Instead of passing through logistic function,

it passes through the softmax function in order to keep the summation of

predicted probabilities to be equal to 1. The softmax function is defined as

softmax(z)i =
exp (zi)∑K
l=1 exp (zl)

, (3.7)

where zi represents the i-th element of the input to softmax, which corresponds

to class i. The result is a vector containing the probabilities that sample x

belong to each class. The output is the class with the highest probability. The

cost function for K classes, m training examples and L layer neural network

is given by

J(θ) = − 1

m

[
m∑
i=1

K∑
k=1

y
(i)
k log

(
hθ
(
x(i)
)
k

)
+
(

1− y(i)k
)

log
(
1− hθ

(
x(i)
)
k

)]

+
λ

2m

L−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
θ
(l)
ij

)2
, (3.8)

where sl is the number of nodes in layer l. Notice that the feature label is

from 0 to n, so s1 = n, sL = K, and

x(i) =
(
x
(i)
0 , x

(i)
1 , . . . , x

(n)
n

)
, i = 1, . . . ,m (3.9)

with x
(i)
0 = 1.

3.1.5 Activation functions

The choices of activation functions g(z) include

19

1. Logistic Sigmoid: g(z) = 1
1+exp(−z) ,

2. Rectified Linear Units (ReLu): g(z) = max{0, z},

3. Hyperbolic Tangent: g(z) = tanh(z).

As generalized from the logistic regression, the logistic sigmoid function has a

gradient easy to compute: g′(z) = (1 − g(z))g(z) and is widely used in feed-

forward ANN. ReLu is particularly useful in extracting the non-linear features

in the convolutional neural network that will be discussed in the next section.

3.1.6 Backpropagation

The forward propagation for each training example is given by

a(i)(1) = x(i),

z(i)(2) = θ(1)a(i)(1),

a(i)(2) = g
(
z(i)(2)

)
, add a

(i)(2)
0

...

a(i)(L−1) = g
(
z(i)(L−1)

)
,

z(i)(L) = θ(L−1)a(i)(L−1),

a(i)(L) = g
(
z(i)(L)

)
. (3.10)

20

We could define the error of node j in layer l as δ
(i)(l)
j , then by considering the

sigmoid activation function,

δ(i)(L) = a(i)(L) − y(i),

δ(i)(L−1) =
[
g
(
z(i)(L−1)

) (
1− g

(
z(i)(L−1)

))
. ∗
(
θ(L−1)

)T]
sL−1×K

δ(i)(L),

...

δ(i)(l+1) =
[
g
(
z(i)(l+1)

) (
1− g

(
z(i)(l+1)

))
. ∗
(
θ(l+1)

)T]
δ(i)(l+2) (3.11)

where sl is the number of units in layer l. A tedious calculation of gradients

gives rise to the result(
∂J(θ)

∂θ(l)

)
=

1

m

m∑
i′=1

δ(i
′)(l+1)

(
a(i
′)(l)
)T

+
λ

m
θ(l) (3.12)

3.2 Convolutional neural network

Convolutional networks, also known as convolutional neural networks

or CNNs, are a specialized kind of neural network for processing data that has

a known, grid-like topology[10]. Examples include time-series data, which can

be thought of as 1D grid taking samples at regular time intervals, and image

data, which can be thought of as a 2D grid of pixels. Convolutional networks

are simply neural networks that use convolution in place of general matrix

multiplication in at least one of their layers.

21

3.2.1 The Convolution Operation

The convolution operation on continuous functions is defined as

s(t) = (x ∗ w)(t) ≡
∫
x(a)w(t− a)da. (3.13)

In the discrete version, integration is replaced by summation:

s(t) = (x ∗ w)(t) ≡
∞∑

a=−∞

x(a)w(t− a). (3.14)

The first argument x is referred to as the input and the second argument w

is named the kernel. The output is sometimes referred to as the feature map.

In the machine learning applications, the input is usually a multi-dimensional

array of data and the kernel is usually a multi-dimensional array of parameters

that are adapted by the learning algorithm. We will refer to these multidi-

mensional arrays as tensors. Notice that both kernels and input are finite

dimensional in practice. For convolution more than 1 axis, we have

s(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n). (3.15)

It is noticeable that the convolution operation is commutative:

s(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n). (3.16)

3.2.2 Motivation

Convolution leverages three important ideas that can help improve a

machine learning system: sparse interactions, parameter sharing and equiv-

ariant representations. Sparse interaction is achieved by making the kernel

22

smaller than the input. In a deep convolutional neural network, units in the

deeper layers may indirectly interact with a larger portion of the input. This

allows the network to efficiently describe complicated interactions between

many variables by constructing such interactions from simple building blocks

that each describe only sparse interactions. Parameter sharing refers to using

the same parameter for more than one function in a model. The particular

form of parameter sharing in the case of convolution causes the layer to have a

property called equivariance to translation, which means if the input changes,

the output changes in the same way. The mathematical definition is given by

f(g(x)) = g(f(x)) (3.17)

where g can be any function that translates the input.

3.2.3 Pooling

A pooling function replaces the output of the net at a certain location

with a summary statistic of the nearby outputs. For example, the max pooling

operation reports the maximum output within a rectangular neighborhood.

In all cases, pooling helps to make the representation become approximately

invariant to small translations of the input.

3.2.4 Full CNN Model

The full architecture (Fig. 3.2) of the CNN model consists of

1. Convolution layer: comprised of feature maps due to multiple feature

detectors as Input⊗ Feature detector = Feature Map,

23

2. ReLu layer: creating nonlinear features by using rectified linear units,

3. Max pooling layer: pooling the maximum in the window,

4. Flattening: converting pooled feature map into 1-d array, which serves

as input layer of feedforward neural network,

5. Full connection: feedforward neural network training.

In more sophisticated applications, one can include multiple sets of convolu-

tion, ReLU and pooling layers with different number of feature detectors(Fig.3.2).

3.3 Restricted Boltzmann Machine

The graphical model of an RBM[2] is a fully-connected bipartite graph

as in Fig. 3.3: The nodes are random variables whose states depend on

the state of the other nodes they are connected to. The model is therefore

parametrized by the weights of the connections, as well as one intercept (bias)

term for each visible and hidden unit. The energy function measures the qual-

ity of a joint assignment:

E(v,h) =
∑
i

∑
j

wijvihj +
∑
i

bivi +
∑
j

cjhj. (3.18)

In the above formula, b and c are the intercept vectors for the visible and

hidden layers, respectively. The joint probability of the model is defined in

terms of the energy:

P (v,h) =
e−E(v,h)

Z
(3.19)

24

3.3.1 Bernoulli Restricted Boltzmann machines

In the Bernoulli RBM, all units are binary stochastic units. This means

that the input data should either be binary, or real-valued between 0 and 1

signifying the probability that the visible unit would turn on or off[11]. This is

a good model for character recognition, where the interest is on which pixels

are active and which aren’t. For images of natural scenes it no longer fits

because of background, depth and the tendency of neighbouring pixels to take

the same values. In the Bernoulli RBM, both hidden units and visible units

are not internally connected while the visible layer and the hidden layer are

fully connected to each other. As a result, the conditional probabilities can be

factorized as follows:

P (v|h) =
∏
i

P (vi|h) , (3.20)

P (h|v) =
∏
i

P (hi|v) , (3.21)

and

P (vi = 1|h) = sigmoid

(∑
j

wijhj + bi

)
, (3.22)

P (hi = 1|v) = sigmoid

(∑
i

wijvi + cj

)
. (3.23)

3.3.2 Maximum Likelihood Learning

RBM is an unsupervised learning method, The learning goal is to max-

imize the logarithmic probability given by

logP (v) = log
∑
h

e−E(v,h) − log
∑
x,y

e−E(x,y). (3.24)

25

To implement gradient descent in minimization, we need the following deriva-

tives of the log-likelihood function:

∂ logP (v)

∂wij
= −

∑
h

P (h|v)
∂E(v,h)

∂wij
+
∑
h,v

p(v,h)
∂E(v,h)

∂wij

= P (hi = 1|v) vj −
∑
v

P (v)P (hi = 1|v) vj, (3.25)

∂ logP (v)

∂bj
= −

∑
h

P (h|v)
∂E(v,h)

∂bj
+
∑
h,v

p(v,h)
∂E(v,h)

∂bj

= vj −
∑
v

P (v)vj, (3.26)

∂ logP (v)

∂ci
= −

∑
h

P (h|v)
∂E(v,h)

∂ci
+
∑
h,v

p(v,h)
∂E(v,h)

∂ci

= P (hi = 1|v)−
∑
v

P (v)P (hi = 1|v) , (3.27)

where we have applied

∂E(v,h)

∂wij
= hivj, (3.28)

∂E(v,h)

∂bj
= vj, (3.29)

∂E(v,h)

∂cj
= hj. (3.30)

3.3.3 Contrastive divergence

Due to the summation over a large number of input data in the gra-

dient evaluation, all common training algorithms for RBMs approximate the

log-likelihood gradient given some data and perform gradient ascent on these

26

approximations. Obtaining unbiased estimates of log-likelihood gradient using

MCMC methods typically requires many sampling steps. However, recently it

was shown that estimates obtained after running the chain for just a few steps

can be sufficient for model training. This leads to contrastive divergence (CD)

learning, which has become a standard way to train RBMs.

The idea of k-step contrastive divergence learning (CD-k) is quite sim-

ple: Instead of approximating the second term in the log-likelihood gradient

by a sample from the RBM-distribution (which would require to run a Markov

chain until the stationary distribution is reached), a Gibbs chain is run for only

k steps (and usually k = 1). As a result,

∂ logP
(
v(0)
)

∂wij
≈ −

∑
h

P
(
h
∣∣v(0)

) ∂E (v(0),h
)

∂wij
+
∑
h

p
(
h
∣∣v(k)

) ∂E (v(k),h
)

∂wij

= P
(
hi = 1

∣∣v(0)
)
v
(0)
j − P

(
hi = 1

∣∣v(k)
)
v
(k)
j , (3.31)

∂ logP
(
v(0)
)

∂bj
≈ −

∑
h

P
(
h
∣∣v(0)

) ∂E (v(0),h
)

∂bj
+
∑
h

p
(
h
∣∣v(k)

) ∂E (v(k),h
)

∂bj

= v
(0)
j − v

(k)
j , (3.32)

∂ logP
(
v(0)
)

∂cj
≈ −

∑
h

P
(
h
∣∣v(0)

) ∂E (v(0),h
)

∂cj
+
∑
h

p
(
h
∣∣v(k)

) ∂E (v(k),h
)

∂cj

= P
(
hi = 1

∣∣v(0)
)
− P

(
hi = 1

∣∣v(k)
)
. (3.33)

3.4 Deep auto-encoder

The idea of deep auto-encoder was proposed in the seminal paper by

Hinton[11], where stacked RBMs were used to encode image data. The struc-

ture of a stacked RBM is shown in Fig.3.4. Instead of a single layer of hidden

27

units, multiple layers of feature detectors with different dimensions are acti-

vated by sigmoid functions except for the top layer. After learning one layer

of feature detectors, their activities are treated as input for learning a second

layer of features. The first layer of feature detectors then become the visible

units for learning the next RBM. This layer-by-layer learning can be repeated

as many time as desired. In Hinton’s work, the visible units of every RBM had

real-valued activities, which were in the range [0, 1] for logistic units. While

training higher level RBMs, the visible units were set to the activation proba-

bilities of the hidden units in the previous RBM, but the hidden units of every

RBM except the top one had stochastic binary values. The hidden units of

the top RBM have stochastic real-valued states drawn from a unit variance

Gaussian whose mean was determined by the input from that RBM’s logistic

visible units. This type of deep auto-encoder had been tested on MNIST data

and facial images[11].

It is difficult to optimize the weights in nonlinear auto-encoders that

contains multiple layers[11]. With large initial weights, auto-encoders typically

find poor local minima; with small initial weights, the gradients in the early

layers are tiny, making it infeasible to train auto-encoders with many hidden

layers. If the initial weights are close to a good solution, gradient descent in

backpropagation works well. This optimal initialization is obtained through

a layer-by-layer unsupervised learning algorithm and each layer is trained as

in an individual RBM. This has proved to be a very efficient and effective

’pre-training’ stage.

28

In Pankaj’s work[14], it was proved and demonstrated that stacked

RBM is intimately related to one of the most important and successful tech-

niques in theoretical physics, renormalization group (RG), which is an iterative

coarse-graining scheme that allows for the extraction of relevant features as

a physical system is examined at different length scales. In their work, an

exact mapping between variational RG and deep learning architectures based

on RBM was constructed and implemented on the ferromagnetic Ising model.

In this report, we followed their work and demonstrated the power of deep

auto-encoders using nearest-neighbor Ising Model in two-dimensional square

lattice.

29

Figure 3.1: The architecture of a feed-forward artificial neural network with
a single hidden layer. The output probabilities of each neuron in the hidden
layer are served as inputs for the output layer. (This figure was clipped from
online course materials at coursera.com)

30

Figure 3.2: The architecture of CNN. The input is a colored picture with a
2d grid of pixels. Two convolution+pooling layers are used to convert pixels
into 1d input data for the fully connected layer as in the feed-forward neural
network[1].

Figure 3.3: The architecture of restricted Boltzmann machine: the hidden
units on the top are connected to the visible units at the bottom. There is no
internal connections between units in the hidden layer[2].

31

(a)

(b)

Figure 3.4: The architectures of auto-encoders[3]: (a) Auto-encoder with a sin-
gle hidden layer and the sigmoid activation function. (b) Deep auto-encoder
with stacked RBMs as encoding layers and the decoding layers have the re-
versed dimensions.

32

Chapter 4

Data-preparation and model specification

In this chapter, we describe the procedure of data generation, process-

ing and visualization. Then we lay out the structures of our models and specify

the choices of parameters.

4.1 Ferromagnetic Ising model

4.1.1 Data

The data for ferromagnetic Ising model was generated by metropolis

Markov chain Monte Carlo sampling described in Chapter 2. For training and

testing purposes in supervised learning, we generated Ising spin configurations

taking binary values {1,−1} from 50 different temperatures (kBT) evenly dis-

tributed from 1.0 to 3.6 (We set the Ising coupling constant J = 1.0). From

each temperature we generated 2500 data points for training sets and 250 data

points for test sets. In order to obtain the critical temperature T ∗ in the ther-

modynamic limit, we trained our model on datasets of different system size

L = 10, 20, 30, 40, 60 and the critical temperature for each system size was

identified.

For each data point, we labeled the high temperature paramagnetic

33

phase (PM) as 1 and the low temperature ferromagnetic phase (FM) as 0. The

features in the datasets include L× L spins labeled as (ix − 1)× L + iy, ix =

1, 2, . . . , L; iy = 1, 2, . . . , L. (Table.4.1)

For RBMs and the deep autoencoder in unsupervised learning, we gen-

erated Ising spin configurations taking binary values {0, 1} from system size

L = 40 with temperature kBT = 2.451 (close to the critical temperature).

Our sample size was 50000 and we applied a train-test split with test size

proportion equal to 0.2 in the whole dataset.

temperature Spin1 Spin2 · · · Spin400 phase
3.548 1 -1 · · · 1 1
3.548 -1 1 · · · -1 1
· · · · · · · · · · · · · · · · · ·

Table 4.1: Sample data frame for L = 20 Ising model.

4.1.2 Model

For supervised learning, we used a feed-forward ANN with one hidden

layer containing 400 sigmoid hidden units to classify the binary phases in

the Ising model. The optimizer was chosen to be stochastic gradient descent

(SGD) with batch size equal to 100 the number of epochs equal to 10. Our

learning rate was 0.001 and the weight decay was equal to 1e− 6.

For unsupervised learning, we implemented a deep auto-encoder with

stacked RBMs as illustrated in Fig.3.4. The visible layer of the first RBM

34

contains 40 × 40 = 1600 binary units and the first hidden layer contains 400

units taking real values within [0, 1) serving as the visible units for the second

RBM. The third layer contain 100 units and our encoding model was topped

with 25 hidden units. Our encoding model was trained layer by layer with

contrastive divergence for 200 epochs and momentum 0.5 using batch size 100

on 40000 total training samples.

4.2 Ising gauge model

4.2.1 Data

The data for Ising gauge model was generated by metropolis Markov

chain Monte Carlo sampling described in Chapter 2 with both spin flips and

gauge updates where we chose s = 0.75. For training and testing purposes

in supervised learning, we generated Ising gauge spin configurations taking

binary values {1,−1} from system size L = 4, 8, 12, 16, 20, 24, 28 with T close

to 0 and ∞ respectively (Again we set the Ising coupling constant J = 1.0).

From each temperature we generated 25000 data points for training sets and

2500 data points for test sets.

For each data point, we labeled the high temperature deconfined phase

as 0 and the low temperature confined phase as 1. The features in the datasets

include 2 × L × L spins defined on the links. We divided our spins into two

sublattices: spins on x links and spins on y links, Spins on x links are labeled

as (ix − 1)× L+ iy, ix = 1, 2, . . . , L; iy = 1, 2, . . . , L, while spins on y links are

labeled as L× L+ (ix − 1)× L+ iy, ix = 1, 2, . . . , L; iy = 1, 2, . . . , L.

35

As input for CNN model, one needs to reshape the data into (2, L, L)

such that two-dimensional feature detectors can be applied to scan the lattice.

4.2.2 Model

The model we implemented includes a convolutional layer first followed

by a ReLu layer, and then followed by a 2-d max pooling layer. The convo-

lutional layer applies 64 2 × 2 filters to the configuration on each sublattice

and the pooled features were then flattened into 1-d arrays. The outcome was

served as input data into a fully connected layer with 64 units and a softmax

output layer. To prevent overfitting, a dropout regularization rate p = 0.1 was

added to the fully connected layer.

36

Chapter 5

Results

5.1 Feed-forward ANN on ferromagnetic Ising model

As mentioned in the previous chapter, our feed-forward ANN was trained

on 50 different temperatures with 2500 data points per temperature. The pre-

dicted probabilities for the test set were averaged over 250 data points per

temperature and shown in Fig.5.1. The transition temperature from FM to

PM (i.e. critical temperature) was decided by the intersection between the

output layer and the base model p = 0.5. We noticed that with the increase of

system size L, the output probability drops (increases) more sharply around

the critical temperature. This is due to O(L2) increase in the number of in-

put features. The training and test accuracy for different L’s are listed in

Table.5.1.

L Training accuracy Test accuracy
10 0.9321 0.9306
20 0.9721 0.9636
30 0.9809 0.9834
40 0.9762 0.9844
60 0.9944 0.9934

Table 5.1: Training and test accuracy for ferromagnetic Ising model.

37

1.0 1.5 2.0 2.5 3.0 3.5
T/J

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tp
ut

L=10
L=20
L=30
L=40
L=60

Figure 5.1: The output layer of our trained feed-forward neural network model
averaged over a test set as a function of T/J for the square-lattice ferromagnetic
Ising model of size L = 10, 20, 30, 40, 60.

From the predicted critical temperature Tc for L = 10, 20, 30, 40, 60, we

could estimate the critical temperature T ∗ in the thermodynamic limit L =∞

by finite size scaling. The procedure was carried out first by a linear regression

y = w ∗ x + b with the least square fitting, where the response variable y is

Tc and the input variable is 1/L, and then by extracting the intercept b as

an estimate of T ∗. The T -1/L plot and the fitted line are shown in Fig. 5.2

and the scaling analysis estimates T ∗/J ≈ 2.266, which is pretty close to the

38

theoretical value T ∗/J = 2/ln(1 +
√

2) ≈ 2.269.

0.00 0.02 0.04 0.06 0.08 0.10
1/L

2.26

2.28

2.30

2.32

2.34

2.36

2.38

2.40

T
* /
J

Figure 5.2: The plot for finite size scaling of the critical temperature Tc/J ∼
1/L. The red line is the fitted result.

5.2 Deep auto-encoder on ferromagnetic Ising model

As mentioned in Chapter 3, our deep auto-encoder consists of stacked

RBMs with 400-100-25 hidden units. We performed a layer-by-layer pretrain-

ing on the encoding layers. After the weights and biases for each RBM were

obtained, the model was ’unfolded’ to produce encoder and decoder networks.

39

(a) (b)

Figure 5.3: Visualization of effective receptive fields for (a) 100 spins in the
middle layer, (b) 25 spins in the top layer. Each 40 by 40 pixel image depicts
the effective receptive field of one of the spins in the hidden units.

Since the decoded layer has reversed dimensions between visible units and

hidden units compared to the encoded layer, the weight matrix for the de-

coded layer is the transpose of the one in the encoded layer and the biases

in the visible units and the hidden units are switched between the two layers.

With this initialization of parameters, one can perform back-propagation in

the global fine-tuning stage with a much better starting point compared to

random initialization.

To better understand the unsupervised learning results in the pretrain-

ing stage, the effective receptive fields[14] are defined as follows: We denote

the effective receptive field matrix of layer l by r(l) and the number of spins in

layer l by n(l), with the visible layer corresponding to l = 0. Each column in

40

r(l) is a vector that encodes the receptive field of a single spin in hidden layer

l. It can be computed by convoluting the weight matrices W (l) encoding the

weights wij between the spins in layers l − 1 and l. To compute r(l) first we

set r(1) = W (1) and used the recursion relationship r(l) = r(l−1)W (l) for l > 1.

Thus the effective field is a measure of how much that hidden spin influences

the spins in the visible layer and a way to visualize which spins in the visible

layer that coupled to that hidden spin. In Fig.5.3, we plotted the density of the

effective receptive fields by color maps for the middle layer with 100 spins and

for the top layer with 25 spins. It can be observed that the receptive fields are

localized in the visible spins and get larger as one moves up the in the encoded

layers. As pointed out in Pankaj’s work[14], this is consistent with what is ex-

pected from the successive application of block renormalization group method

in statistical mechanics, indicating that the architecture of stacked RBMs is

implementing a coarse-graining scheme similar to block spin renormalization.

Moreover, the size of the blocks coupling to each hidden unit in a layer are

of approximately the same size. In conclusion, this local block spin structure

emerging from the pretraining process strongly suggests that stacked RBMs

are self-organizing to implement block-spin renormalization.

In the back-propagation fine-tuning stage, we compared the training

result with that of random initialization in Fig.5.4, where the logarithmic

likelihood loss as a function of epochs was monitored for randomly initialized

and pre-trained models. By observation, one is able to find that the deep auto-

encoder makes rapid progress after pre-training but little progress without

41

0 50 100 150 200
of passes over data

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70
Lo

ss
 p
e
r
d
a
ta
 p
o
in
t

Figure 5.4: Loss per data point in the fine tuning stage as a function of number
of epochs trained for the deep auto-encoder. The green curve corresponds to
random initialization in the model parameter. The blue curve is initialized
with pre-trained model parameters.

pre-training. This is consistent with the result from Hinton’s work[11].

With the fine-tuned parameters, our model can be applied to recon-

struct the Ising spin configurations in the test dataset. In Fig.5.5, we gener-

ated the reconstructed spin configurations by Bernoulli sampling based on the

predicted probabilities for each spin on the lattice sites.

5.3 CNN on Ising gauge model

We employed CNN to train the Ising gauge models with system size

L = 4, 8, 12, 16, 20, 24, 28. The CNN discriminates high-temperature T = ∞

42

Figure 5.5: Reconstructed spin configurations (lower) compared to the corre-
sponding raw configurations (upper).

from T = 0 states with an accuracy of 100% on both training and test datasets

except for L = 4, in which 95.54% and 95.15% accuracy was achieved on the

training and test set respectively. To examine the origin of the discriminative

power of CNN, one can check whether it discerns T = 0 states from T = ∞

states by the presence and absence of satisfied local constraints, i.e. whether

the 4-spin state on a plaquette q is such that
∏

i σ
z
i = 1. We constructed

new test sets with modified low temperature states: applying transformations

where a spin is flipped every m = 2 and m = 4 plaquettes (Fig. 5.6). Such

transformations were proved not to destroy the topological order of the T = 0

state where the extended closed loop structure was preserved, but they change

the local constraints of the original Ising lattice gauge theory. Our model for

L = 20 showed that the prediction accuracy drops to 50% and 82.77% for

m = 2 and m = 4 respectively. This reveals that CNN relies on the presence

43

of local constraints instead of the extended loop structure.

Figure 5.6: The spin flip transformations on the links in x direction every m
plaquettes for L = 20, where m = 2 for the upper row and m = 4 for the lower
row. From left to right: spin configurations before the transformation, spin
configurations after the transformation, spins changed under the transforma-
tion indicated by the white spots.

44

Chapter 6

Conclusion and discussion

In this report, we presented our study on the deep neural network

application in the Ising type models on the square lattice. Our results mostly

reproduced the work by Juan[7] and Pankaj[14] and showed the discriminative

and encoding power of deep neural networks.

In the application of feed-forward ANN to the ferromagnetic Ising

model, one can understand the training of the network through a simple toy

model involving a hidden layer of only three analytically ’trained’ perceptrons[7],

representing the possible combinations of high- and low-temperature magnetic

states exclusively on the basis of their magnetization, which plays the role of

the order parameter in the model. The fully connected ANN relies on the

order parameter in the classification task. It has also been shown that the

power of feed-forward ANNs lies in their ability to generalize to different lat-

tice structures[7].

In the application of CNN to Ising gauge model, we have shown that

deep learning methods can encode basic information about unconventional

phases and we demonstrated the power of CNN in local constraints detection

even though the model itself does not have an order parameter. In Juan[7]’s

45

work, a toy model using streamlined version of the original CNN was con-

structed to detect satisfied local constraints and estimate the cross over tem-

perature. The analytical model they presented indicated that neural networks

have the potential to represent ground state wavefunctions of unconventional

topological states.

In the application of deep auto-encoders, we illustrated by Ising model

that the mechanism behind stacked RBMs is similar to the iterative coarse-

graining procedure in RG. We also demonstrated the influence of pre-training

in reconstructing the spin configurations in analogy to the image and the

hand-written digit reconstruction problems.

Overall, our study suggests a prospectively enormous applications of

deep learning algorithms in solving notoriously difficult many-body problems

in physics. As in all other areas of ”big data”, we anticipate the rapid adoption

of machine learning techniques as a basic research tool in statistical mechanics.

46

Appendix

47

Appendix 1

Sample code

We present sample codes in Python here for both supervised and un-

supervised learning.

1.1 Keras implementation of feed-forward ANN in fer-
romagnetic Ising model

coding : u t f−8

In [1] :

import pandas as pd
import numpy as np
import keras
from keras . models import Sequent i a l
from keras . l a y e r s import Dense
from keras . op t im i z e r s import SGD
from keras import r e g u l a r i z e r s
import matp lo t l i b . pyplot as p l t
ge t ipython () . magic (u ’ matp lo t l i b i n l i n e ’)

In [2] :

def read data (L) :
”””
: type L : i n t (system s i z e)

48

: r t y p e t ra in , t e s t : pd . dataframe (wi th phases l a b e l e d)
”””
t r a i n f i l e n a m e=’ c o n f i g u r a t i o n ’+str (L)+’ . csv ’
t e s t f i l e n a m e=’ t e s t ’+str (L)+’ . csv ’
columns=[’ temperature ’]+[’ Spin ’+str (i) for i in

xrange (1 ,L∗L+1)]
t r a i n=pd . r ead c sv (’ I s i n g d a t a / ’+’L ’+str (L)+’ / ’+

t r a i n f i l e n a m e , names=columns)
t e s t=pd . r ead c sv (’ I s i n g d a t a / ’+’L ’+str (L)+’ / ’+

t e s t f i l e n a m e , names=columns)

dec ide c r i t i c a l temperature
f i l ename=’Cv ’+str (L)+’ . csv ’
s p e c i f i c h e a t=pd . r ead c sv (’ I s i n g d a t a / ’+’L ’+str (L)+’

/ ’+f i l ename , names=[’ temperature ’ , ’Cv ’])
Tc=s p e c i f i c h e a t [’ temperature ’] [np . argmax (

s p e c i f i c h e a t [’Cv ’])]

add phase column
t r a i n [’FM’]=[int (T<=Tc) for T in t r a i n [’ temperature ’

]]
t e s t [’FM’]=[int (T<=Tc) for T in t e s t [’ temperature ’]]
t r a i n [’PM’]=[int (T>Tc) for T in t r a i n [’ temperature ’

]]
t e s t [’PM’]=[int (T>Tc) for T in t e s t [’ temperature ’]]

return t ra in , t e s t

In [3] :

t ra in , t e s t=read data (20)

In [2 5] :

t r a i n . t a i l ()

49

In [4] :

def data p roc e s s (t ra in , t e s t) :
”””
: type t ra in , t e s t : pd . dataframe (wi th phases l a b e l e d)
: r t y p e trX , trY , teX , teY
”””
s h u f f l e
t r a i n=t r a i n . sample (f r a c =1) . r e s e t i n d e x (drop=True)

trX , trY = t r a i n . drop ([’FM’ , ’PM’ , ’ temperature ’] , a x i s
=1) , np . array (t r a i n [[’FM’ , ’PM’]])

teX , teY = t e s t . drop ([’FM’ , ’PM’ , ’ temperature ’] , a x i s
=1) , np . array (t e s t [[’FM’ , ’PM’]])

return trX , trY , teX , teY

In [5] :

trX , trY , teX , teY=data p roc e s s (t ra in , t e s t)

In [1 8] :

def create mode l (h idden un i t s =3, lamb =0.05 , l r =0.001) :
c l a s s i f i e r=Sequent i a l ()
c l a s s i f i e r . add (Dense (output dim=hidden uni t s , i n i t=’

uniform ’ , k e r n e l r e g u l a r i z e r=r e g u l a r i z e r s . l 2 (lamb
) , a c t i v a t i o n=’ s igmoid ’ ,
input dim=trX . shape [1]))

c l a s s i f i e r . add (Dense (output dim =1, i n i t=’ uniform ’ ,
k e r n e l r e g u l a r i z e r=r e g u l a r i z e r s . l 2 (lamb) ,

a c t i v a t i o n=’ s igmoid ’))

50

sgd = SGD(l r =0.001 , decay=1e−6)#, momentum=0.9 ,
n e s t e r o v=True)

c l a s s i f i e r . compile (opt imize r=’adam ’ , l o s s=’
b ina ry c ro s s en t r opy ’ , met r i c s =[’ accuracy ’])

return c l a s s i f i e r

In [1 9] :

c l a s s i f i e r=create mode l (h idden un i t s =400)

In [2 0] :

c l a s s i f i e r . f i t (np . array (trX) ,np . argmax (trY , a x i s =1) ,
b a t c h s i z e =100 , nb epoch =5, verbose =1)

In [2 1] :

y pred=c l a s s i f i e r . p r e d i c t (np . array (teX))

In [2 2] :

np . mean ((y pred >0.5) [: ,0]== np . argmax (teY , a x i s =1))

In [2 3] :

Temperatures=np . array (sorted (l i s t (set (t e s t [’ temperature ’
]))))

Pred avgs =[]
num T=Temperatures . shape [0]
num test=len (t e s t [’ temperature ’])
batch=num test /num T

51

for i in xrange (num T) :
s t a r t=batch∗ i
end=s t a r t+batch
b a t c h p r e d i c t i o n=y pred [s t a r t : end]
Pred avgs . append (np . mean(bat ch pred i c t i on , a x i s =0))

Pred avgs=np . array (Pred avgs)

In [2 4] :

import matp lo t l i b . pyplot as p l t
ge t ipython () . magic (u ’ matp lo t l i b i n l i n e ’)

p l t . p l o t (Temperatures , Pred avgs [: , 0] , ’ bo ’ ,
Temperatures , Pred avgs [: , 0] , ’b− ’ ,
Temperatures , 1−Pred avgs [: , 0] , ’ ro ’ , Temperatures ,
1−Pred avgs [: , 0] , ’ r− ’)

In [] :

1.2 Keras implementation of CNN in Ising gauge model

coding : u t f−8

In [1] :

import pandas as pd
import numpy as np

In [2] :

def read data (L) :
”””
: type L : i n t (system s i z e)
: r t y p e t ra in , t e s t : pd . dataframe (wi th phases l a b e l e d)

52

”””
t r a i n f i l e n a m e=’ c o n f i g u r a t i o n ’+str (L)+’ . csv ’
t e s t f i l e n a m e=’ t e s t ’+str (L)+’ . csv ’
columns=[’ temperature ’]+[’ Spin ’+str (i) for i in

xrange (1 ,2∗L∗L+1)]
t r a i n=pd . r ead c sv (’ I s i ng gauge da ta / ’+’L ’+str (L)+’ / ’

+t r a i n f i l e n a m e , names=columns)
t e s t=pd . r ead c sv (’ I s i ng gauge da ta / ’+’L ’+str (L)+’ / ’+

t e s t f i l e n a m e , names=columns)

Separate T=0 and T=i n f
Tc=2.

add phase column (T=0: 1 , T=i n f : 0)
t r a i n [’ phase ’]=[int (T<=Tc) for T in t r a i n [’

temperature ’]]
t e s t [’ phase ’]=[int (T<=Tc) for T in t e s t [’ temperature

’]]

return t r a i n , t e s t

In [3] :

L=8
tra in , t e s t=read data (L)

In [4] :

t r a i n . head ()

In [5] :

def data p roc e s s (t ra in , s h u f f l e=True) :
”””

53

: t ype t ra in , t e s t : pd . dataframe (wi th phases l a b e l e d)
: r t y p e trX , trY , teX , teY
”””
s h u f f l e
i f s h u f f l e :

t r a i n=t r a i n . sample (f r a c =1) . r e s e t i n d e x (drop=True
)

s e p a r a t e A, B s u b l a t t i c e s
trainA=t r a i n [[’ Spin ’+str (i) for i in xrange (1 ,L∗L+1)

]] . a s matr ix ()
tra inB=t r a i n [[’ Spin ’+str (i) for i in xrange (L∗L+1,2∗

L∗L+1)]] . a s matr ix ()
trX=np . z e r o s ((trainA . shape [0] , L , L , 2))
trX [: , : , : , 0] = np . reshape (trainA , (trainA . shape [0] , L ,

L))
trX [: , : , : , 1] = np . reshape (trainB , (tra inB . shape [0] , L ,

L))

trY = t r a i n [’ phase ’]

return trX , trY

In [6] :

trX , trY=data p roc e s s (t r a i n)
teX , teY=data p roc e s s (t e s t)

∗∗ check p l a q u e t t e ∗∗

In [7] :

def p laquet t e (l i n k s) :
p l aque t t e = np . z e r o s ((l i n k s . shape [0] , L , L))

54

for i in xrange (L) :
for j in xrange (L) :

p l aque t t e [: , i , j]= l i n k s [: , i , j , 0]∗ l i n k s
[: , i , j , 1] ∗ l i n k s [: , (i +1)%L
, j , 1]∗ l i n k s [: , i , (j +1)%L , 0]

return p laquet t e

In [8] :

plaq=p laque t t e (trX)
plaq

In [9] :

Import ing the Keras l i b r a r i e s and packages
from keras . models import Sequent i a l
from keras . l a y e r s import Conv2D
from keras . l a y e r s import MaxPooling2D
from keras . l a y e r s import Flat ten
from keras . l a y e r s import Dense
from keras . l a y e r s import Dropout
from keras . op t im i z e r s import Adam

In [1 0] :

I n i t i a l i s i n g the CNN
c l a s s i f i e r = Sequent i a l ()

Step 1 − Convolut ion
c l a s s i f i e r . add (Conv2D(64 , (2 , 2) , input shape = (L , L ,

2) , a c t i v a t i o n = ’ r e l u ’))

Step 2 − Pool ing

55

c l a s s i f i e r . add (MaxPooling2D (p o o l s i z e = (2 , 2)))

Step 3 − F l a t t e n i n g
c l a s s i f i e r . add (Flat ten ())

Step 4 − F u l l connect ion
c l a s s i f i e r . add (Dense (un i t s = 64 , a c t i v a t i o n = ’ r e l u ’))

drop out
c l a s s i f i e r . add (Dropout (p = 0 . 1))

c l a s s i f i e r . add (Dense (un i t s = 1 , a c t i v a t i o n = ’ s igmoid ’))

Compiling the CNN
adam=Adam(l r =0.0001)
c l a s s i f i e r . compile (opt imize r = adam , l o s s = ’

b ina ry c ro s s en t r opy ’ , met r i c s = [’ accuracy ’])

In [1 1] :

c l a s s i f i e r . f i t (trX , trY , b a t c h s i z e =100 , nb epoch =25,
verbose =0)

In [1 2] :

t ry pred=c l a s s i f i e r . p r e d i c t (trX)
tey pred=c l a s s i f i e r . p r e d i c t (teX)

In [1 3] :

np . mean ((try pred >0.5) [: ,0]== trY)

In [1 4] :

56

t ey pred . shape

In [1 5] :

np . mean ((tey pred >0.5) [: ,0]== teY)

∗∗ p r e d i c t cross−over temperature on f i n i t e temperature
data ∗∗ :

In [1 6] :

def r e a d f i n i t e (L) :
f i l ename=’ t e s t f i n i t e T ’+str (L)+’ . csv ’
columns=[’ beta ’]+[’ Spin ’+str (i) for i in xrange (1 ,2∗

L∗L+1)]
data=pd . r ead c sv (’ I s i ng gauge da ta / ’+’L ’+str (L)+’ / ’+

f i l ename , names=columns)

return data

In [1 7] :

def d a t a p r o c e s s f i n i t e (t e s t) :
”””
: type t ra in , t e s t : pd . dataframe (wi th phases l a b e l e d)
: r t y p e trX , trY , teX , teY
”””
s e p a r a t e A, B s u b l a t t i c e s
testA=t e s t [[’ Spin ’+str (i) for i in xrange (1 ,L∗L+1)

]] . a s matr ix ()
testB=t e s t [[’ Spin ’+str (i) for i in xrange (L∗L+1,2∗L∗

L+1)]] . a s matr ix ()
teX=np . z e r o s ((testA . shape [0] , L , L , 2))
teX [: , : , : , 0] = np . reshape (testA , (testA . shape [0] , L , L)

57

)
teX [: , : , : , 1] = np . reshape (testB , (testB . shape [0] , L , L)

)

return teX

In [1 8] :

t e s t f i n i t e=r e a d f i n i t e (L)
teX=d a t a p r o c e s s f i n i t e (t e s t f i n i t e)

In [1 9] :

y pred=c l a s s i f i e r . p r e d i c t (teX)

In [2 0] :

y pred=(y pred >0.5)

In [2 1] :

Betas=np . array (sorted (l i s t (set (t e s t f i n i t e [’ beta ’]))))
Pred avgs =[]
num T=Betas . shape [0]
num test=len (t e s t f i n i t e [’ beta ’])
batch=num test /num T

for i in xrange (num T) :
s t a r t=batch∗ i
end=s t a r t+batch
b a t c h p r e d i c t i o n=y pred [s t a r t : end]
Pred avgs . append (np . mean(bat ch pred i c t i on , a x i s =0))

58

Pred avgs=np . array (Pred avgs)

In [2 2] :

import matp lo t l i b . pyplot as p l t
ge t ipython () . magic (u ’ matp lo t l i b i n l i n e ’)

p l t . p l o t (Betas , Pred avgs [: , 0] , ’ bo ’ , Betas , Pred avgs
[: , 0] , ’b− ’ , Betas , 1−Pred avgs [: , 0] , ’ ro ’ ,
Betas , 1−Pred avgs [: , 0] , ’ r− ’)

In [2 3] :

teX . shape

In [2 4] :

batch

In [] :

59

Bibliography

[1] https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/.

[2] http://scikit-learn.org/stable/modules/generated/sklearn.neural_

network.BernoulliRBM.html.

[3] https://wikidocs.net/3413.

[4] https://en.wikipedia.org/wiki/Statistical_physics, Jul 2017.

[5] https://en.wikipedia.org/wiki/Machine_learning, Jul 2017.

[6] Louis-Fran çois Arsenault, Alejandro Lopez-Bezanilla, O. Anatole von

Lilienfeld, and Andrew J. Millis. Machine learning for many-body physics:

The case of the anderson impurity model. Phys. Rev. B, 90:155136, Oct

2014.

[7] Juan Carrasquilla and Roger G. Melko. Machine learning phases of

matter. Nat Phys, 13(5):431–434, May 2017. Letter.

[8] Wen Xiao Gang. Quantum field theory of many-body systems: from the

origin of sound to an origin of light and electrons. Oxford University

Press, Oxford, 2007.

60

[9] Luca M. Ghiringhelli, Jan Vybiral, Sergey V. Levchenko, Claudia Draxl,

and Matthias Scheffler. Big data of materials science: Critical role of the

descriptor. Phys. Rev. Lett., 114:105503, Mar 2015.

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.

MIT press, page 1, 2016.

[11] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of

data with neural networks. Science, 313(5786):504–507, 2006.

[12] Sergei V. Kalinin, Bobby G. Sumpter, and Richard K. Archibald. Big-

deep-smart data in imaging for guiding materials design. Nat Mater,

14(10):973–980, Oct 2015. Progress Article.

[13] Aaron Gilad Kusne, Tieren Gao, Apurva Mehta, Liqin Ke, Manh Cuong

Nguyen, Kai-Ming Ho, Vladimir Antropov, Cai-Zhuang Wang, Matthew J.

Kramer, Christian Long, and Ichiro Takeuchi. On-the-fly machine-learning

for high-throughput experiments: search for rare-earth-free permanent

magnets. Sci. Rep., 4:6367, Sep 2014.

[14] Pankaj Mehta and David J. Schwab. An exact mapping between the

Variational Renormalization Group and Deep Learning. arXiv, pages

1–7, oct 2014.

[15] Anders W. Sandvik. Computational studies of quantum spin systems.

AIP Conference Proceedings, 1297(1):135–338, 2010.

61

[16] S. S. Schoenholz, E. D. Cubuk, D. M. Sussman, E. Kaxiras, and A. J.

Liu. A structural approach to relaxation in glassy liquids. Nat Phys,

12(5):469–471, May 2016. Letter.

[17] J. Thijssen. Computational Physics. Cambridge University Press, 2007.

[18] S Wansleben and A Weinkauf. Monte carlo study of an ising gauge

system. Z. Phys. B, 261:255–261, 1983.

62

Vita

Qi Chen graduated from Kongjiang Senior High School in Shanghai,

China. He received the Batchelor of Science in Applied Physics from Tongji

University in 2011. Then he started his Ph.D in Physics at the University of

Texas at Austin from August 2011. In May 2015, he was enrolled as a M.S.

student in statistics and data science at the University of Texas at Austin.

Address: chenqi0805@gmail.com

This report was typeset using LATEX by the author.

63

