5,191 research outputs found

    The Buffered Block Forward Backward technique for solving electromagnetic wave scattering problems

    Get PDF
    This work focuses on efficient numerical techniques for solving electromagnetic wave scattering problems. The research is focused on three main areas: scattering from perfect electric conductors, 2D dielectric scatterers and 3D dielectric scattering objects. The problem of fields scattered from perfect electric conductors is formulated using the Electric Field Integral Equation. The Coupled Field Integral Equation is used when a 2D homogeneous dielectric object is considered. The Combined Field Integral Equation describes the problem of scattering from 3D homogeneous dielectric objects. Discretising the Integral Equation Formulation using the Method of Moments creates the matrix equation that is to be solved. Due to the large number of discretisations necessary the resulting matrices are of significant size and therefore the matrix equations cannot be solved by direct inversion and iterative methods are employed instead. Various iterative techniques for solving the matrix equation are presented including stationary methods such as the ”forwardbackward” technique, as well its matrix-block version. A novel iterative solver referred to as Buffered Block Forward Backward (BBFB) method is then described and investigated. It is shown that the incorporation of buffer regions dampens spurious diffraction effects and increases the computational efficiency of the algorithm. The BBFB is applied to both perfect electric conductors and homogeneous dielectric objects. The convergence of the BBFB method is compared to that of other techniques and it is shown that, depending on the grouping and buffering used, it can be more effective than classical methods based on Krylov subspaces for example. A possible application of the BBFB, namely the design of 2D dielectric photonic band-gap TeraHertz waveguides is investigated. i

    On Iterative Algorithms for Quantitative Photoacoustic Tomography in the Radiative Transport Regime

    Full text link
    In this paper, we describe the numerical reconstruction method for quantitative photoacoustic tomography (QPAT) based on the radiative transfer equation (RTE), which models light propagation more accurately than diffusion approximation (DA). We investigate the reconstruction of absorption coefficient and/or scattering coefficient of biological tissues. Given the scattering coefficient, an improved fixed-point iterative method is proposed to retrieve the absorption coefficient for its cheap computational cost. And we prove the convergence. To retrieve two coefficients simultaneously, Barzilai-Borwein (BB) method is applied. Since the reconstruction of optical coefficients involves the solution of original and adjoint RTEs in the framework of optimization, an efficient solver with high accuracy is improved from~\cite{Gao}. Simulation experiments illustrate that the improved fixed-point iterative method and the BB method are the comparative methods for QPAT in two cases.Comment: 21 pages, 44 figure

    Accelerated stationary iterative methods for the numerical solution of electromagnetic wave scattering problems

    Get PDF
    The main focus of this work is to contribute to the development of iterative solvers applied to the method of moments solution of electromagnetic wave scattering problems. In recent years there has been much focus on current marching iterative methods, such as Gauss-Seidel and others. These methods attempt to march a solution for the unknown basis function amplitudes in a manner that mimics the physical processes which create the current. In particular the forward backward method has been shown to produce solutions that, for some twodimensional scattering problems, converge more rapidly than non-current marching Krylov methods. The buffered block forward backward method extends these techniques in order to solve three-dimensional scattering problems. The convergence properties of the forward backward and buffered block forward backward methods are analysed extensively in this thesis. In conjunction, several means of accelerating these current marching methods are investigated and implemented. The main contributions of this thesis can be summarised as follows: ² An explicit convergence criterion for the buffered block forward backward method is specified. A rigorous numerical comparison of the convergence rate of the buffered block forward backward method, against that of a range of Krylov solvers, is performed for a range of scattering problems. ² The acceleration of the buffered block forward backward method is investigated using relaxation. ² The efficient application of the buffered block forward backward method to problems involving multiple source locations is examined. ² An optimally sized correction step is introduced designed to accelerate the convergence of current marching methods. This step is applied to the forward backward and buffered block forward backward methods, and applied to two and three-dimensional problems respectively. Numerical results demonstrate the significantly improved convergence of the forward backward and buffered block forward backward methods using this step

    Computational aspects of electromagnetic NDE phenomena

    Get PDF
    The development of theoretical models that characterize various physical phenomena is extremely crucial in all engineering disciplines. In nondestructive evaluation (NDE), theoretical models are used extensively to understand the physics of material/energy interaction, optimize experimental design parameters and solve the inverse problem of defect characterization. This dissertation describes methods for developing computational models for electromagnetic NDE applications. Two broad classes of issues that are addressed in this dissertation are related to (i) problem formulation and (ii) implementation of computers;The two main approaches for solving physical problems in NDE are the differential and integral equations. The relative advantages and disadvantages of the two approaches are illustrated and models are developed to simulate electromagnetic scattering from objects or inhomogeneities embedded in multilayered media which is applicable in many NDE problems. The low storage advantage of the differential approach and the finite solution domain feature of the integral approach are exploited. Hybrid techniques and other efficient modeling techniques are presented to minimize the storage requirements for both approaches;The second issue of computational models is the computational resources required for implementation. Implementations on conventional sequential computers, parallel architecture machines and more recent neural computers are presented. An example which requires the use of massive parallel computing is given where a probability of detection model is built for eddy current testing of 3D objects. The POD model based on the finite element formulation is implemented on an NCUBE parallel computer. The linear system of equations is solved using direct and iterative methods. The implementations are designed to minimize the interprocessor communication and optimize the number of simultaneous model runs to obtain a maximum effective speedup;Another form of parallel computing is the more recent neurocomputer which depends on building an artificial neural network composed of numerous simple neurons. Two classes of neural networks have been used to solve electromagnetic NDE inverse problems. The first approach depends on a direct solution of the governing integral equation and is done using a Hopfield type neural network. Design of the network structure and parameters is presented. The second approach depends on developing a mathematical transform between the input and output space of the problem. A multilayered perceptron type neural network is invoked for this implementation. The network is augmented to build an incremental learning network which is motivated by the dynamic and modular features of the human brain
    corecore