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Abstract

Through-the-wall radar imaging is an application that is gaining more and more at-

tention due to its large applicability and underlying mathematical challenges.

In this thesis, we investigate techniques aimed at identifying, characterizing and

tracking targets of interest hidden behind walls starting from through-the-wall mea-

surements performed by deploying electromagnetic antennas around a monitored

building. This might help police forces and rescue teams in surveillance and salvage

operations by recognizing hostile or criminal activities, and could save lives by pre-

venting them from entering a dangerous situation blindly.

The identification of the targets is formulated in mathematical terms as an inverse

scattering problem which, being non-linear and generally ill-posed, is difficult to

address. Adjoint voxel-based reconstruction algorithms are analyzed to rapidly ob-

tain an approximation of the target positions whereas more sophisticated level set-

based shape reconstructions are considered to retrieve information about their ge-

ometry and physical properties. The effectiveness of these methods is confirmed by

performing numerical experiments in 2D and 3D, balancing the realism of the simu-

lated setups with the corresponding computational costs. In addition, the possibil-

ity of using a linear combination of Radial Basis Functions to represent the level set

function associated with the system is explored. This defines a parametric frame-

work in which the evolution of the latter function is reduced to an optimization task

over discrete artificial time. Therefore, to promote fast reconstructions, first-order

and quasi-Newton stochastic optimization algorithms are evaluated and compared.

When moving targets enter the monitored building, the task of following their mo-

tions in almost real-time is addressed by adopting a Bayesian inference approach

that combines adjoint reconstructions equipped with an optimally truncated spar-

sity regularization and a Kalman filter. Numerical experiments show that accurate

trajectory estimations are attainable provided that reliable kinematic models are

available a priori to describe the expected target dynamics. Relaxing this hypoth-

esis motivates the development of an innovative tracking approach based on deep

learning and enhanced by considerations suggested by the inverse problem the-

ory. Inspired by the concept of model bagging and rewriting the localization task

as a classification problem, a combination of independent networks is employed to

accurately retrieve the unknown motions directly from through-the-wall measure-

ments.
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Chapter 1

Introduction

The ability to see through walls has always been highly desired as it provides vi-

sion into otherwise obscured areas. Police forces could use through-the-wall infor-

mation to localize people in hostage situations, fire-fighters could identify people

under rubble after earthquakes or inside buildings on fire. Moreover, through-the-

wall information might be used, for example, to tackle smuggling across borders,

in monitoring and surveillance operations to recognize threats or hostile activities,

and to extract miners trapped under debris [1], [2], [3], [4], [5].

Through-the-Wall Radar Imaging (TWRI) finds its origins in algorithms originally

developed for medical imaging, especially tomography applications [6], [7], and

geophysical imaging, where seismic propagation measures are adopted to identify

soil discontinuities that are often an indication of the presence of oil, gas, or min-

eral deposits [8]. TWRI large applicability has driven a constant development and

a steadily growing interest in the field, making it an active and fertile research topic

nowadays [9]. This is confirmed by the report [10], according to which the through-

the-wall radar market size is projected to reach USD 148.6 million by 2026, from

USD 101.9 million in 2020.

From an academic point of view, TWRI has received much attention due to its

underlying mathematical challenges. Firstly, it requires knowledge of different tech-

nical fields, from signal processing to radar imaging techniques, from electromag-

netism to inverse problems.

Furthermore, the presence of walls between antennas and targets introduces wave

attenuation, reflection, absorption and diffraction phenomena that, if not accounted

for, might produce distorted estimations and blurred image reconstructions, often
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including ghost targets not justified by the data [11], [12]. The presence of walls

results in the definition of multiple material interfaces, i.e. parameter discontinu-

ities, that can significantly modify the wavefront during propagation. These inter-

faces also prevent the possibility of adopting free space propagation assumptions

that are instead commonly accepted with other radar applications [9]. In through-

the-wall setups, attenuation phenomena play a significant role, especially if high-

density materials like concrete or bricks are present [13]. This problem is further

compounded by the fact that the waves propagate twice inside the building walls

before being detected by the receivers, yielding potentially signal fading issues.

Additional complications arise when the wall parameters are unknown. In fact, ac-

cording to [14], a common strategy proposed to mitigate wall clutter is based on

background subtraction, namely on the subtraction from the raw data of the es-

timated or measured contributions given solely by the presence of the walls [15],

[16]. However, if the properties of these walls are unknown, the application of the

previous approach might be problematic.

Although in principle it could be possible to estimate the wall features from the data,

this is difficult in practice since the wall effects depend on multiple factors. Among

them, we mention the geometry of the building analysed, the nature and configura-

tion of the antennas, the frequency range considered, and the presence of humidity

or rainwater on the building surfaces. Moreover, this estimation implies the intro-

duction of a wall model that, although usually assumed homogeneous for simplic-

ity, might require more complex schematizations [14].

Due to the large popularity of TWRI problems, several approaches have been

developed to localize and recognize objects of interest hidden behind walls. Among

them, we briefly mention Microwave and Millimiter-wave (MMW) radars [17], Ultra-

Wideband (UWB) radars [18], [19], Continuous-wave (CW) radars [20], [21], Doppler

radars [22], [23], multiple-input multiple-output (MIMO) radars [24], [25], flashlight

radars [26], [27], and mono and multi-static radars [28], [29]. Also, great interest has

been shown in developing TWRI solutions for detecting vital signs behind a wall

such as heartbeats, respiration and body movements [30], [31], [32], [33].

However, most of these studies are presented from an engineering or a signal pro-

cessing perspective. In other words, they mainly focus on the technical develop-

ment of radar techniques that can be reliably applied in practice, on the features of
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the antennas employed, on how to mitigate the effects of clutter and noise, and of-

ten include experimental validations realized in laboratories or based on industrial

data [34], [35], [36], [37].

Our approach to TWRI problems is different. We attempt to provide a mathematical

formulation of the problems concerning identifying and monitoring targets of in-

terest, consequently proposing proof-of-concept solution schemes based on the in-

verse problem theory, optimization theory, Bayesian statistical inference and deep

learning.

The ultimate goal of this PhD research is to develop algorithms to characterize, lo-

calize and track targets of interest hidden behind walls. We focus on surveillance

applications where the objective is to monitor the activity inside a building starting

from through-the-wall measurements. These measurements are collected by de-

ploying antennas around the considered building, for example, by mounting them

on drones that can be flown at the desired locations.

We are interested in identifying and characterizing stationary objects by recovering

their location, geometry, size and physical properties. Also, if moving targets are

present, we would like to follow their motion. In monitoring applications obtain-

ing reliable through-the-wall estimations is paramount to distinguish hostile and

criminal activities, recognize possible threats and potentially save lives by prevent-

ing police officers or rescue teams from entering a dangerous building blindly.

1.1 Thesis overview

In this thesis, we begin by formulating the localization task in rigorous mathemati-

cal terms through the definition of a scattering inverse problem. The aim is to recon-

struct profiles of unknown electromagnetic parameters according to the available

through-the-wall data. However, in the frequency range adopted, the presence of

highly scattered fields renders the underlying non-linear inverse problem ill-posed

and difficult to solve [38]. To counter these complications, additional information

is accounted for by introducing suitable regularization strategies. This leads to the

definition of voxel-based reconstruction techniques able to rapidly localize the tar-

gets and shape-based reconstruction schemes capable to minutely retrieve their ge-

ometry together with an estimation of their physical properties.



24 CHAPTER 1. INTRODUCTION

When moving objects are present inside the building, the focus of our research be-

comes following their motion in almost real-time. This defines a so-called target

tracking problem, namely a task where the objective is to identify and localize ob-

jects of interest starting from sequential sensor measurements [39].

However, in our application, this procedure is complicated by the fact that the avail-

able measurements, being a sequence of consecutively collected through-the-wall

radar data, do not provide direct information on the dynamic state of the objects.

Furthermore, the nature of these observations might impose constraints on the

amount of time available to process the information corresponding to a given step

before having to proceed to the next one, introducing therefore the necessity of per-

forming this operation in almost real-time.

This leads to the introduction of a tracking procedure developed explicitly for through-

the-wall applications based on the combination of regularization techniques for

non-linear inverse problems and a Kalman filter [40]. Here, each target is speci-

fied by a state vector containing its dynamic properties, and the goal is to estimate

the future behaviour of the system by combing predictions based on a suitable, a

priori defined, kinematic model and the collected measurements according to the

Bayes’ theorem [41].

Although Bayesian statistical inference for tracking is extremely powerful and ap-

plicable to our problem, it suffers from some limitations. Among them, we mention

the following. Firstly, it often requires an a priori defined model for the expected

motion of the targets. This condition is difficult to satisfy in our application since

these targets might model people walking arbitrarily in a building. Secondly, esti-

mating the target locations from the available indirect measurements implies re-

solving an inverse scattering problem which is a complex task in itself.

To overcome the previous drawbacks, we continue the process of developing track-

ing techniques by also incorporating data-driven solutions. In particular, we em-

ploy deep learning networks to map the measurement data directly to the object

positions without solving the underlying inverse problem. Although fast tracking

algorithms can be designed by using machine learning, they suffer from a strong de-

pendence on the quality of the data set available for training, which should be rich

enough to describe the phenomena under consideration completely. This condition

might be difficult to satisfy when collecting data is expensive and time-consuming

[42].

Therefore, we propose a hybrid tracking approach in which the performance of
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the adopted neural networks is boosted by incorporating readily available informa-

tion suggested by the inverse problem theory. This corresponds to the definition of

multi-input architectures that combine the predictions given by different network

classifiers according to fixed rules suggested by probabilistic considerations.

The previous summary provides an overview of the main problems addressed in

this thesis. In the following, we specify instead the general assumptions accepted.

We begin by highlighting that our work relies entirely on synthetic data since we do

not have access to experimental measurements. The generation of this synthetic

data is realized through the introduction of numerical solvers aimed at approximat-

ing the propagation of electromagnetic waves according to the Helmholtz equation,

when 2D setups are considered, or to Maxwell’s equations, when more realistic 3D

domains are addressed.

We distinguish the problems of recovering information on the targets according to

their stationary or dynamic nature. In particular, when characterizing stationary

objects, assuming that a high level of accuracy is sought, we expect that a suffi-

ciently large set of measurements is given and that enough processing time is avail-

able. The goal is to obtain a precise estimation of their features such as their loca-

tion, geometry and physical parameters. Conversely, when moving objects enter the

scenery, we focus on following their trajectory in almost real-time starting from in-

direct through-the-wall measurements. This means that the attention is placed on

rapidly identifying all the targets present and localizing their positions rather than

minutely estimating their features. The separation of the previous tasks reflects the

different challenges involved in each of them and the need of developing distinct

mathematical frameworks. However, although these problems are addressed indi-

vidually, we investigate the possibility of performing tracking in an unknown static

environment by firstly recovering this stationary background and consequently fo-

cussing on the motions. This extension is important since, in many practical situa-

tions, police or rescue teams do not know the exact furniture layout inside a building

a priori. Hence, such information needs to be obtained from the measurements to-

gether with an approximation of the target dynamics.

Throughout this thesis, we always assume to known a priori the building proper-

ties. Furthermore, in order to reduce absorption and reflection phenomena, we

only operate at frequencies far below the threshold of 3GHz. According to [14], this

choice should yield reasonable attenuation and increase the capability to penetrate
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the walls of the waves. The selection of these frequencies is realized recalling that

high values provide better resolution and imaging performance while low values

favour wall penetration [43]. Therefore, a trade-off is sought.

In the numerical experiments considered, we always balance the realism of the sim-

ulated setups and the associated computational costs. The goal is eventually to re-

alize proof-of-concept studies aimed at providing information on how similar tech-

niques might perform in practice. In this sense, our research assists the investiga-

tion carried out by the Defence Science and Technology Laboratory (Dstl) for the

development and improvement of TWRI techniques.

1.1.1 Thesis structure

The structure of this thesis is outlined below.

In Chapter 2, we introduce Maxwell’s equations and assume them as a model to de-

scribe the propagation of the electromagnetic fields in 3D domains. Then, we rigor-

ously formulate the task of identifying targets hidden inside a building as an inverse

scattering problem in 3D. The localization of these objects is here realized through

the recovery of a conductivity profile that satisfies the through-the-wall measure-

ments available for the unknown system configuration that we aim to approximate.

Adjoint voxel-based reconstruction techniques are investigated to rapidly localize

the targets, while level set-based algorithms are assessed to retrieve detailed in-

formation about their shape and geometry. The stability of these reconstruction

processes is boosted through the adoption of suitable regularization strategies and

tailor-made line search criteria.

In Chapter 3, we introduce a 2D simplification of the previous Maxwell’s model

based on the Helmholtz equation. This is motivated by the attempt to reduce the

computational costs associated with the propagation of the fields and focus more

on solving the underlying inverse problem. Similarly to what realized in 3D, ad-

joint voxel-based reconstructions and level set-based techniques are employed to

retrieve information on targets of interest hidden behind walls. Additionally, we

also examine the possibility of recovering estimates of some physical properties of

these objects by generalizing the formulation of the underlying inverse problem and

by adopting sampling strategies aimed at minimizing the discrepancy between data

and estimations.
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In Chapter 4, we introduce a parametric framework for shape reconstruction prob-

lems. Since the solution of the underlying inverse problem is reduced to a min-

imization task, we evaluate the possibility of employing higher than linear-order

stochastic optimization strategies to speed up the reconstruction process. However,

due to computational constraints, this requires reducing the dimensionality of the

problem. This condition is here satisfied by introducing a parametric level set rep-

resentation of the targets based on a linear combination of radial basis functions.

This leads to a comparison of several optimization algorithms from the particular

viewpoint of stochastic data selection in inverse scattering.

In Chapter 5, we propose a tracking scheme for through-the-wall applications based

on the combination of regularization techniques for non-linear inverse problems

and a Bayesian Kalman filter. The objective is to follow the trajectories of moving

targets hidden within a building starting from a sequence of through-the-wall mea-

surements collected at consecutive time steps. In more detail, a fast adjoint voxel-

based reconstruction equipped with sparsity regularization is employed to roughly

identify candidate objects. Then, a tracking stage is implemented to recover the

dynamics of the targets in almost real-time according to joint probabilistic data as-

sociation rules.

In Chapter 6, data-driven solutions for through-the-wall target tracking problems

are proposed. The goal is to define a procedure able to reliably identify objects of

interest hidden inside a building starting from through-the-wall measurements and

follow their movements in almost real-time. The core idea is to map these mea-

surements directly to the target locations without solving the underlying scattering

problem. This is realized by adopting hybrid data-driven models that combine deep

learning and some key concepts of the inverse problem theory. To the best of the au-

thor’s knowledge, this analysis is the first application of a model bagging inspired,

deep learning-based technique for through-the-wall target tracking. The accuracy

of the proposed approach is evaluated by performing numerical experiments in 2D

and 3D adopting different antenna configurations.

In Chapter 7, extensions of the previous reconstruction schemes are investigated.

The objective is to concurrently estimate the conductivity and permittivity profiles

from the data by generalizing the formulation of the underlying inverse scattering

problem, assuming both the previous parameters as unknowns. Multi-parameter

generalizations of the sampling procedure and of the data-driven tracking approaches

proposed before are also analyzed.
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In Chapter 8, some conclusions and general remarks are provided. Additionally, a

few ideas are outlined to possibly extend the content of this thesis.

1.2 Outputs arising from this thesis

We conclude the introduction by listing the outputs originated from this PhD re-

search:

• 2D Through-the-wall Radar Imaging Using a Level Set Approach, Gabriele In-

corvaia and Oliver Dorn. This conference proceeding was presented at the

international conference ‘2019 PhotonIcs & Electromagnetics Research Sym-

posium - Spring (PIERS-Spring)’ held in Rome, Italy, where it was given a third

‘Best Student Paper Award’. Then, after peer review, it was published by IEEE

on IEEE Xplore;

• Tracking targets from indirect through-the-wall radar observations, Gabriele

Incorvaia and Oliver Dorn. This conference proceeding was presented at the

international conference ‘2020 14th European Conference on Antennas and

Propagation (EuCAP)’, which took place online due to the COVID-19 pan-

demic. Then, after peer review, it was published by IEEE on IEEE Xplore;

• A deep learning application for Through-the-Wall Radar Imaging, Gabriele In-

corvaia and Oliver Dorn. This poster was presented at the online event ‘Math-

ematics of Machine Learning Symposium 2020’ organized by the University

of Bath and at the ‘Manchester Mathematics Research Students’ Conference

2020’, where it was awarded the third ‘Best Poster Prize’;

• Stochastic Optimization Methods for Parametric Level Set Reconstructions in

2D through-the-Wall Radar Imaging, Gabriele Incorvaia and Oliver Dorn. This

was an invited paper for the Special Issue ‘New Trends and Future Challenges

in Computational Microwave Imaging’ and, after peer review, was published
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in the journal ‘Electronics’;

• A deep-learning approach for through-the-wall radar tracking in 3D, Gabriele

Incorvaia and Oliver Dorn. This conference proceeding was presented at the

‘Conference on Mathematics in Defence and Security 2020’, organised online

by the Institute of Mathematics & its Applications;

• A deep-learning classifier for object tracking from through-the-wall radar data,

Gabriele Incorvaia and Oliver Dorn. This conference proceeding was pre-

sented at the international conference ‘2021 15th European Conference on

Antennas and Propagation (EuCAP)’, which took place online due to the COVID-

19 pandemic. Then, after peer review, it was published by IEEE on IEEE Xplore.



Chapter 2

3D TWRI object reconstructions

In this chapter we address the problem of localizing and characterizing targets of

interest hidden behind walls in 3D configurations. Referring to surveillance appli-

cations, the goal is to retrieve information about stationary objects included within

a building starting from through-the-wall measurements collected by deploying an-

tennas around its walls. The identification and characterization of these targets are

realized through the reconstruction of the profiles of specific electromagnetic pa-

rameters and, mathematically, these tasks are formulated in terms of a scattering

inverse problem.

The structure of this chapter is outlined hereafter. We begin by introducing

Maxwell’s equations as a model to describe the propagation of the electromagnetic

fields generated by a specific antenna layout for a given system configuration. The

solution of these equations in inhomogeneous domains is numerically realized start-

ing from a Finite Differences Frequency Domain approximation. Consequently, be-

ginning from through-the-wall measurements, we formulate the task of identifying

targets hidden inside a building as a 3D inverse scattering problem for which differ-

ent reconstruction approaches are implemented and compared. In particular, we

introduce voxel-based adjoint techniques to rapidly approximate target locations

and level set-based schemes to retrieve accurate estimations of their shapes. Even-

tually, the robustness of these algorithms with respect to specific aspects of the re-

construction modalities is assessed by performing numerical experiments.

30



2.1. INTRODUCTION OF MAXWELL’S EQUATIONS 31

2.1 Introduction of Maxwell’s equations

The physical model adopted to schematize the propagation of the electromagnetic

fields within the domain is based on Maxwell’s equations. Mathematically, these

equations define a set of uncoupled first-order linear differential equations that

have the property to describe the experimental electric and magnetic fields gen-

erated by a given distribution of sources [44], [45].

Adopting a frequency domain representation, Maxwell’s equations can be expressed

as follows:

∇×H(x ,ω)− iωD(x ,ω) = J e (x ,ω), (2.1)

∇×E (x ,ω)+ iωB (x ,ω) = J m(x ,ω), (2.2)

∇·D(x ,ω) = ρ(x ,ω), (2.3)

∇·B (x ,ω) = 0, (2.4)

where x ∈ Ω, Ω = R3, is a generic space location and ω ∈ R+ denotes an angular

frequency. According to the notation adopted in [45], E is the electric vector field,

H indicates the magnetic field, B denotes the magnetic induction field, D is the

displacement vector and i is the complex imaginary unit. Modelling the possible

presence of external sources, ρ accounts for the electric charge density, J m is the

magnetic current density and, similarly, J e = J cond
e + J ext

e indicates the electric cur-

rent density defined as the sum of the conductivity current density and, if present,

the contribution due to external sources.

Equations (2.1), (2.2), (2.3), and (2.4) are respectively known as the Ampère’s cir-

cuital law, Faraday’s law of induction, Gauss’s law and Gauss’s law for magnetism.

According to [46], assuming the absence of ferroelectric and ferromagnetic me-

dia, further dependencies between the previous fields are expressed by the so-called

constitutive relations:

D = ε(x ,ω,E )E , (2.5)

B =µ(x ,ω, H)H , (2.6)

J cond
e =σ(x ,ω,E )E , (2.7)

where the dielectric permittivity tensor ε, the magnetic permeability tensor µ and
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the electrical conductivity tensor σ are assumed positive definite and, without loss

of generality, represented by diagonal tensors [45]. Notice that in the case of isotropic

space, these parameters can be modelled by scalar functions.

Following [47], [46], we adopt as boundary condition at infinity the so-called

Silver-Muller radiation condition:

lim
||x ||2→∞

[p
µ0H(x)×x −||x ||2pε0E (x)

]= 0, (2.8)

where the limit holds uniformly in all directions. Equation (2.8) is sufficient for the

existence of unique solutions of Maxwell’s scattering problems [46].

We conclude this brief section by introducing a popular and compact notation

used to represent the Ampère’s and Faraday’s laws as follows:(
−b ∇×
∇× a

)(
E

H

)
=

(
J ext

e

J m

)
, (2.9)

where a = iωµ and b = iωε+σ define the so-called impedivity and admittivity ten-

sors respectively.

2.1.1 Discretization of Maxwell’s equations

Maxwell’s equations introduced before admit analytical solutions in homogeneous

spaces with simple geometries. For example, we refer to Appendix 9.1 for a deriva-

tion of free-space solutions in the presence of a magnetic dipole source. How-

ever, analytical solutions are generally not available when inhomogeneous domains

are addressed. In these cases, approximations of the Maxwell’s solutions can be

achieved numerically as discussed in this section.

Solving Maxwell’s equations numerically is a challenging task for which several

pieces of software have been proposed of both commercial and academic nature.

However, since the development of this solver plays a fundamental role in our re-

search, we decided to implement it by ourselves following closely the ideas pro-

posed in [48]. This choice is motivated by the attempt to obtain a code designed
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specifically for our problem of interest, whose structure is conveniently defined ac-

counting for the underlying assumptions considered and easily modifiable accord-

ing to the computational resources available. For efficiency and flexibility purposes,

we favour parallel computing architectures and optimize their implementation by

adopting specific libraries and efficient memorization modalities. More informa-

tion is provided below.

The starting point is given by an integral representation of the Ampère’s and

Faraday’s laws in the frequency domain as shown below:∮
B

H ·d l = iω
∫

S
εE · n̂dS +

∫
S

J e · n̂dS, (2.10)

∮
B

E ·d l =−iω
∫

S
µH · n̂dS +

∫
S

J m · n̂dS, (2.11)

where S is a connected, oriented, smooth surface with boundary B . Also, according

to [46], we assume that the unit normal vector n̂(x), for x ∈ S, is continuous and di-

rected always into one side of S.

The computation of numerical solutions requires a discrete approximation of these

equations. Here, following [48], a Finite-Differences-Frequency-Domain (FDFD)

approximation of (2.10) and (2.11) is derived. However, we clearly specify that al-

ternative approximations could be chosen. Among them, we briefly mention the Fi-

nite Element Method (FEM) [49], the Finite Volume Method (FVM) [50], [51] and the

Boundary Element Method (BEM) [52]. A comparison of their performance when

applied to Maxwell’s equations can be found in [53], [54]. According to [53], FDM

can be seen as a special case of both FEM and FVM when considering a rectangular

grid for the discretization of the domain. This motivates our FDFD choice. Fur-

thermore, we follow the approach proposed by Yee in [55] where, in addition to a

primary grid, we consider also a staggered grid to approximate the components of

the electromagnetic fields within the domain of interest. These grids are both rect-

angular in our application. Moreover, as suggested in [55], their linear space size

is selected as a fraction of the wavelength to ensure that over one increment the

fields do not change significantly. This stabilizes the central differences used in the

FDFD approximation and helps the implementation of specific boundary condi-

tions. However, at the same time, the use of Finite Difference Methods could lead to
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high computational costs [53]. Thus, to counter this limitation, specialized precon-

ditioning techniques have been proposed in the literature [56], [57]. For complete-

ness, we mention that no preconditioners are considered in our numerical solver.

The FDFD discretization strategy relies on approximating the line and surface

integrals included in (2.10) and (2.11) as shown next:

∫ l1/2

−l1/2
f ·d l ' fml l1, (2.12)

∫ l1/2

−l1/2

∫ l2/2

−l2/2
f · n̂dS ' fms l1l2, (2.13)

where l1, l2 are the lengths of the grid cells, f represents a generic vector field, and

fml and fms denote its magnitude at the middle point of the integration domains

assumed.

Let Nx , Ny and Nz be the numbers of voxels considered in each direction. Then, a

discrete representation of the electromagnetic fields can be achieved by evaluating

their components in every cell of the domain at the locations illustrated in Figure

2.1. In other words, the electric field is computed at the middle point of the cell

edges while the magnetic field is calculated in correspondence with the centre of

the cell surfaces.

x

z
y

Ex

Ez

Ey

Hy

Hx

Hz

Figure 2.1: For each voxel of the 3D grid defined, the electric field com-
ponents are evaluated at the middle point of the cell edges while the
magnetic field components at the centre of the cell surfaces.
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As highlighted in [48], an alternative (but equivalent) representation can be ob-

tained by introducing a staggered grid whose vertices coincide with the centres of

the cells defined before. See Figure 2.2. For clarity, let us name the original grid as

the primary grid and the latter one as the staggered grid. Then, on the staggered

grid, the magnetic components are evaluated on the cell edges while the electric

fields on the cell surfaces.

x
z

y

Figure 2.2: Schematic view of the 3D grid structure adopted. A cell of
the primary grid is shown in black while a cell of the staggered grid is
shown in blue (dashed lines). Notice that the centre of the primary cell
corresponds to a vertex of the staggered cell.

Considering the previous grid structure, a FDFD approximation of Maxwell’s

equations is computed next by applying (2.12) and (2.13) to (2.10) and (2.11).

For simplicity, we conveniently introduce the notation described hereafter. Each

cell is specified by three indices, namely (i , j ,k), corresponding to the cell coordi-

nates on the primary grid. Thus, 1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny , and 1 ≤ k ≤ Nz . Also, for a

given m-th cell, we denote its neighbours by adopting the compact notation shown

in Table 2.1.
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cell coordinates cell notation

(i , j ,k) m

(i −1, j ,k) d

(i , j −1,k) l

(i , j ,k −1) f

(i +1, j ,k) u

(i , j +1,k) r

(i , j ,k +1) b

Table 2.1: Notation associated with the neighbours of a generic m cell.

Applying (2.12) and (2.13) to (2.11), it follows that:

Ex(i , j ,k)xm +Ey (i +1, j ,k)yu −Ex(i , j +1,k)xr −Ey (i , j ,k)ym =

=−iωµ0µ̄mzz Hz(i , j ,k)xm ym + Jmz (i , j ,k)xm ym , (2.14)

−Ex(i , j ,k)xm −Ez(i +1, j ,k)zu +Ex(i , j ,k +1)xb +Ez(i , j ,k)zm =

=−iωµ0µ̄my y Hy (i , j ,k)xm zm + Jmy (i , j ,k)xm zm , (2.15)

−Ez(i , j ,k)zm +Ey (i , j ,k)ym +Ez(i , j +1,k)zr −Ey (i , j ,k +1)yb =

=−iωµ0µ̄mxx Hx(i , j ,k)ym zm + Jmx (i , j ,k)ym zm , (2.16)

where the integrals are computed according to the orientations illustrated in Figure

2.3. Further information on the quantities included here is provided in Appendix

9.3.
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x
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Ex(i , j ,k)

Ey (i , j ,k)

Ex(i , j +1,k)

Ey (i +1, j ,k)

x
z

Ex(i , j ,k)

Ez(i , j ,k)

Ex(i , j ,k +1)

Ez(i +1, j ,k)

y
z

Ey (i , j ,k)

Ez(i , j ,k)

Ey (i , j ,k +1)

Ez(i , j +1,k)

Figure 2.3: Electric field components evaluated on different faces of the
m-th cell of the primary grid. The circular arrows define the orientation
chosen for the calculation of the line integrals as described in the text.

Similarly, from (2.10), it follows that:

Hx(i , j −1,k)x̄l +Hy (i , j ,k)ȳm −Hx(i , j ,k)x̄m −Hy (i −1, j ,k)ȳd =

= iωε0ε̄mzz Ez(i , j ,k)amz + Jez (i , j ,k)amz , (2.17)

Hz(i −1, j ,k)z̄d +Hx(i , j ,k)x̄m −Hz(i , j ,k)z̄m −Hx(i , j ,k −1)x̄ f =

= iωε0ε̄my y Ey (i , j ,k)amy + Jey (i , j ,k)amy , (2.18)

Hz(i , j ,k)z̄m −Hy (i , j ,k)ȳm −Hz(i , j −1,k)z̄l +Hy (i , j ,k −1)ȳ f =

= iωε0ε̄mxx Ex(i , j ,k)amx + Jex (i , j ,k)amx , (2.19)

where the integrals are computed according to the orientations illustrated in Figure

2.4. Again, further details are provided in Appendix 9.3.
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x
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Figure 2.4: Magnetic field components evaluated on different faces of
the m-th cell of the staggered grid. The circular arrows define the orien-
tation chosen for the calculation of the line integrals as described in the
text.

Compactly, the previous equations can be rewritten as follows:

ADl e =−iωµ0D ADµh +D A j m , (2.20)

AT D l̄ h = iωε0D Aεe +D Ā j e , (2.21)

where h, e, j e , j m are the discrete approximations of the magnetic field, the electric

field, and the electric and magnetic external currents respectively. Also,µ0 and ε0 in-

dicate the magnetic permeability and the dielectric permittivity in free space. More

information on the definition of the matrix A, its transpose AT and Dl , D A, Dµ, D l̄ , D Aε, D Ā

is available in Appendix 9.3.

Starting from (2.20) and expressing the magnetic field h in terms of e yields:

h = [iωµ0D ADµ]−1(D A j m − ADl e). (2.22)

Hence, substituting (2.22) into (2.21) provides:

(AT D l̄ D−1
µ D−1

A ADl −k2
0D Aε+D−1

l D̄ AεB
T D−1

Vεε
BD Aε)e =

=−iωµ0D Ā j e + AT D l̄ D−1
µ j m , (2.23)
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where k2
0 = ω2µ0ε0 is the wavenumber in free-space. Here, the rightmost term on

the left side of Equation (2.23) has been added to counter the creation of artefacts

due to resonance effects at zero frequency, which might affect the numerical accu-

racy of the implemented model [58], [59]. According to [58], this term forces the

gradient of the electric charge distribution to be zero, i.e. ∇[∇· (εE )] = 0, preventing

the presence of static solutions. We also mention that the top bar in Equation (2.23)

stands for complex conjugate.

Equation (2.23) reduces the solution of Maxwell’s equations to the solution of a

linear system. This provides an approximation of the electric field within the do-

main. Then, an estimate of the magnetic field can be computed through Equation

(2.22).

2.1.2 Numerical implementation of Maxwell’s equations

In this section we provide more information on the numerical implementation of

the 3D Maxwell’s solver. The objective is to achieve a fast and reliable solution of

Equation (2.9) suitably discretized through the adoption of an FDFD approxima-

tion.

We start by addressing a well known numerical problem associated with the

propagation of waves, namely the possible formation of reflection effects at the do-

main boundaries. This finite volume artefact commonly appears when propagation

phenomena in unbounded domains are numerically approximated using bounded

setups dictated by memory constraints.

Several approaches have been investigated to counter this issue [60]. Among them,

a popular tool is the so-called Perfectly Matched Layers (PMLs) schematization,

proposed originally by J. P. Berenger in [61]. Although this technique was initially de-

veloped to assist the solution of unbounded electromagnetic problems using Finite-

Differences-Time-Domain (FDTD) approximations, it can be easily extended to the

frequency domain. The main idea involves surrounding the domain of interest with

a sequence of layers whose electromagnetic properties are defined to absorb waves

without any reflection at the outer boundaries. Information on how to specify these

electromagnetic parameters within the PMLs can be found in [61], where a 2D setup
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is considered. A 3D extension of the previous analysis is described in [62]. Accord-

ing to these papers, reflection phenomena might occur in correspondence of inter-

faces where the values of these parameters change brusquely. Therefore, aiming to

smooth variations, these parameters are progressively modified inside the PMLs as

the distance from the interface increases.

In our numerical solver we adopt a specific type of PMLs, the so-called Uni-axes

PMLs (U-PMLs), in which the wave absorption only occurs along the wave direc-

tion of propagation. In more detail, let us consider for example an electromagnetic

wave propagating along the z-direction and an absorbing boundary orthogonal to

the same axis. Then, within these U-PMLs, the electromagnetic parameters change

progressively along the z-direction only, causing wave absorption along this direc-

tion and avoiding the formation of reflection phenomena along the x and y direc-

tions simultaneously.

Following [48], the practical implementation of these absorbing regions is real-

ized by modifying the structure of the dielectric permittivity and magnetic perme-

ability as follows:

εpml = εΛ̄, (2.24)

µpml =µΛ̄, (2.25)

where Λ̄ is a diagonal dyad whose definition depends on the orientation of the PMLs

considered. For example, referring again to the previous instance in which an inter-

face orthogonal to the z-axis is assumed, we have:

Λ̄=


λ 0 0

0 λ 0

0 0 1/λ

 , λ= 1+ 1

1+ iε0ω
· (1− i )β

θ(x, y, z)
, (2.26)

where θ(x, y, z) provides the discretized distance from the interface and β ∈ R+ is a

free parameter.

A crucial element of the Maxwell’s solver is the solution of Equation (2.23), which

represents a computationally demanding task. Therefore, defining an efficient way

to realise this operation is essential.

Although several algorithms are available in the literature, their performance gen-

erally depends on the nature of the linear system considered [63]. In our problem,



2.2. 3D SCATTERING INVERSE PROBLEMS 41

since the matrix defined by the left side of Equation (2.23) is a non-symmetric, in-

definite, band matrix, indirect solution methods are chosen. Although they do not

guarantee convergence in a finite number of steps, they often yield accurate ap-

proximations rapidly. In addition, being computationally efficient, they represent

the default choice when large linear systems are considered [64], [63], [65].

Different indirect solution algorithms have been assessed during the development

of this forward solver, namely the Bi-Conjugate Gradient method (BiCG), the Gen-

eralized Minimal RESidual method (GMRES) and the Bi-Conjugate Gradient STABle

method (BiCGSTAB) [65], [66]. Eventually, the last one has been selected as the de-

fault option. Also, we mention that optimised implementations of these algorithms

are available in the SciPy Python library [67].

Achieving a fast numerical forward model is of primary importance. As de-

scribed extensively in the following section, the identification of targets of interest

will be written in terms of an inverse scattering problem, the solution of which im-

plies several runs of this Maxwell’s solver. Therefore, further optimization of this

code is sought through parallel computing (employing the multiprocessing Python

library) and a compressed sparse row format memorization [66] of the matrices

computed.

We conclude the section by briefly specifying that a comparison between the nu-

merical outcomes of the Maxwell’s solver and the corresponding analytical field so-

lutions derived in free space is discussed in Appendix 9.6. That analysis makes us

confident that our forward model can be used when modelling more complex and

inhomogeneous domains as realized in this chapter.

2.2 3D scattering inverse problems

A possible starting point for understanding the concepts of forward and inverse

problems is the definition provided by J. B. Keller in [68]: ‘We call two problems

inverses of one another if the formulation of each involves all or part of the solution

of the other. Often, for historical reasons, one of the two problems has been studied

extensively for some time, while the other has never been studied and is not well

understood. In such cases, the former is called the direct or forward problem, while

the latter is the inverse problem’.
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Following [69], from a mathematical perspective, there is a duality between these

two problems since one can be obtained from the other by exchanging the role of

the data and that of the unknowns. Therefore, the decision of considering what is

the direct and what is the inverse problem might seem arbitrary.

This is not the case from a physical point of view. As already mentioned, one of the

two problems is generally considered more fundamental and, as a consequence, has

been investigated more extensively.

As highlighted in [70], popular mathematical tasks can be interpreted as inverse

problems although often they are not recognised as such. For example, determining

a polynomial p(x) of degree n with given zeros x1, ..., xn can be seen as the inverse

of the problem of finding the zeros x1, ..., xn of a given polynomial p(x) of degree n.

Scattering problems constitute another popular example of inverse problems. Here,

the forward task is the computation of the scattered waves assuming to know the

sources and the scattering targets. Conversely, the inverse task amounts to charac-

terize the scattering targets from the knowledge of the sources and of the scattered

waves.

Thus, as highlighted by the previous example, the direct problem can be seen as the

computation of the consequences of given causes while the corresponding inverse

consists of determining the unknown causes to known consequences [71].

A fundamental property of a given inverse problem is its well-posedness. The

concept of well-posed problems was originally introduced by J. Hadamard in [72].

According to Hadamard, a problem is called well-posed if its solution is unique, ex-

ists for arbitrary data and depends continuously on the data. However, a solution

that changes significantly due to a small variation of the data, while being mathe-

matically admissible, is not a solution in the physical sense. In fact, a noise compo-

nent is inherently present in any measurement process and, therefore, physical data

is never known exactly [70]. Conversely, a problem that is not well-posed according

to the Hadamard criteria is called ill-posed.

Following [69], if the problem considered is ill-posed, since it might not have an

exact solution in the physical sense, we focus on computing an approximative so-

lution that reproduces the data within the experimental errors. However, since the

space of the approximative solutions can be in principle quite broad, in order to ob-

tain a meaningful result, it might be advantageous to require further constraints that
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promote specific families of solution. This addition of supplementary information

defines the concept of regularization [73]. Different regularization strategies have

been explored in the literature and, in general, their selection is problem specific.

In our application, the identification of objects of interest amounts to solving

an inverse scattering problem whose objective is the reconstruction of a conduc-

tivity profile that satisfies the available measurements. In more detail, for a given

unknown target setup, we use the antennas located around the building being mon-

itored to collect data, namely to measure the values of the fields generated by a

known source configuration q =
(

Je

Jm

)
at the receiver locations. Let us denote this

data as ũ =
(

Ẽ

H̃

)
. Thus, recalling Maxwell’s equations introduced previously, the ob-

jective is to determine a conductivity profile σ̃ that satisfies the following relation:(
−b̃ ∇×
∇× a

)(
Ẽ

H̃

)
=

(
Je

Jm

)
, (2.27)

where a = iωµ and b̃ = iωε+σ̃ are the so-called impeditivity and admittivity param-

eters. Compactly, Equation (2.27) can be rewritten as:

ΛM (b̃)ũ = q, (2.28)

withΛM (b̃) =
(
−b̃ ∇×
∇× a

)
.

In Equation (2.27), the dependence of the fields on the unknown conductivity

distribution makes the problem non-linear. Furthermore, at the frequency regime

of interest, the presence of highly scattered fields renders it ill-posed and therefore

difficult to solve [74], [89]. Moreover, in practice, the uniqueness of the solution is

generally not expected a priori [75], [76], [77]. Notice that, throughout this chapter,

only the conductivity profile is to be determined from the data while all the other

electromagnetic parameters are assumed known and equal to their background dis-

tributions. Additionally, following [45], we only refer to isotropic domains so that the

impedivity and admittivity can both be modelled as scalar functions without loss of

generality.
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2.2.1 Historical introduction to electromagnetic inverse problems

We provide here a brief historical introduction to the electromagnetic inverse prob-

lem theory following [75] and refer interested readers to [78] for further information.

According to [75], the electromagnetic scattering theory aims to describe the effects

that inhomogeneous medium has on an incident electromagnetic wave. Although

this constitutes a challenging problem, due to its large applicability in areas such as

geophysical explorations, radar and medical imaging, it has attracted many scien-

tists since the early 20th century.

In this chapter we focus on electromagnetic inverse problems. In general, their ob-

jective is to characterize the inhomogeneities included in a domain of interest from

the knowledge of the scattered waves and of the equations that describe the propa-

gation of the fields.

Since the 1980s, several researchers have proposed a collection of techniques to

address specific electromagnetic inverse problems. Among them, we mention the

work done by Calderòn [79], in which the author evaluated whether it is possible to

determine the electrical conductivity of a medium by making voltage and current

measurements at its boundary. However, most of these initial studies were more ad

hoc strategies for specific tasks rather than systematic mathematical analyses of the

underlying physical phenomena. The reason for this is that these problems are in-

herently non-linear and improperly posed and, consequently, are difficult to solve

[74].

The central aspect of uniqueness of the solutions of inverse scattering problems

was investigated in [80], [81], [82]. However, as discussed in [75], due to their ill-

posedness, one might ask how to stabilize and regularize these problems in order to

find approximative solutions that are admissible in a physical sense, that is, capa-

ble of reproducing the scattered data available within the experimental errors. Ini-

tial efforts in this direction were based on linearizations of the underlying inverse

problems [83]. However, although these linearized models were appealing because

of their mathematical simplicity, they neglected the intrinsic non-linear nature of

scattering phenomena. This limited their accuracy and applicability in real-world

scenarios. Initial work aimed at taking into account full inverse scattering problems

was proposed in [84], [85]. Since then, a large number of different techniques have

been developed that explicitly acknowledge the non-linear and ill-posed nature of

these scattering problems [75], [86], [87], [88].
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2.3 3D Adjoint Field Methods

In this section we formulate the task of identifying and characterizing targets of in-

terest in terms of a scattering inverse problem according to [89] and [90]. Then, we

introduce a voxel-based adjoint reconstruction technique hereinafter referred to as

the Adjoint Field Method (AFM).

Given an unbounded domain Ω = R3, let us start by introducing the function

spaces:

F := L2(Ω), (2.29)

Z j :=
{
ζ j = (h j 1, ...,h j m j )T ; h j n ∈C3,n = 1, ...,m j

}
, j = 1, ..., p, (2.30)

U :=
{(

E (x)

H(x)

)
; E , H ∈ [L2(Ω)]3; ∇×E ,∇×H ∈ [L2(Ω)]3

}
, (2.31)

Y :=
{(

J e (x)

J m(x)

)
; J e , J m ∈ [L2(Ω)]3

}
, (2.32)

where F defines the space of the (unknown) parameters, Z j the space of the mea-

surements associated with source q-th, U the space of the states and Y the space of

the sources. Moreover, the following inner products are defined:

〈b1,b2〉F =
∫
Ω

b1(x)b̄2(x)dx, (2.33)

〈
ζ j 1,ζ j 2

〉
Z j

=
m j∑

n=1
h j 1,n · h̄ j 2,n , (2.34)

〈(
E 1

H 1

)
,

(
E 2

H 2

)〉
U

=
∫
Ω

E 1 · Ē 2d x +
∫
Ω

H 1 · H̄ 2d x , (2.35)

〈(
J e1

J m1

)
,

(
J e2

J m2

)〉
Y

=
∫
Ω

J e1 · J̄ e2 d x +
∫
Ω

J m1 · J̄ m2 d x , (2.36)

where the top bar denotes conjugate quantities.

In these spaces, some operators are introduced as follows. Let u j ∈U denote the

solution of Maxwell’s equations corresponding to a source q j ∈ Y . Then, in order to

express the operation of measuring the magnetic fields at the receiver locations, we
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introduce a measurement operator as follows:

M j : U → Z j , M j u j (x) :=
{∫
Ω
δ(x −d j n)H j (x)d x

}
n=1,...,m j

(2.37)

where d j n , n = 1, ...,m j , are the detector positions associated with the source q j and

δ(·) is the Dirac delta function. Equation (2.37) implies that, in our application, the

reconstruction task relies on the measurement of the magnetic fields at the receiver

locations. However, a similar definition could be adopted if the electric fields were

instead considered.

For a given source q j ∈ Y , a forward operator is introduced as a non-linear map

from the space of the parameters to the space of measurements such that:

G j : F → Z j , G j (b) := M j u j , (2.38)

where u j ∈U satisfies: ΛM (b)u j = q j .

Therefore, let us suppose to be given a set of (true) measurements G̃ j ∈ Z j , j =
1, ..., p, corresponding to an unknown setup. Then, Equation (2.38) allows to alter-

natively reformulate the original inverse problem (2.27) as the task of finding an

admittivity profile b̃ ∈ F such that:

G j (b̃) = G̃ j , (2.39)

for j = 1, ..., p.

Equivalently, by introducing the following residual operator:

R j : F → Z j , R j (b) :=G j (b)−G̃ j , (2.40)

Equation (2.39) can be rewritten compactly as

R(b̃) = 0, (2.41)

with R(b) := (R1(b), ...,Rp (b))T . Therefore, according to (2.41), finding a conductiv-

ity profile that matches the available data amounts to solve a system of non-linear

equations.
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Following [89] and adopting a Newton’s approach, an approximation of the solu-

tion of Equation (2.41) can be obtained starting from an initial guess b(0) for the

unknown parameter and iteratively updating its estimation as shown next:

b(k+1) = b(k) +δb(k+1), (2.42)

where the updates δb(k+1) satisfy the condition:

R ′(b(k))δb(k+1) =−R(b(k)), (2.43)

with k = 0,1,2, ... . As discussed in [91], the linearized operator R ′(b) can be seen as

the Fréchet derivative of the residual operator R(b). We refer to [91], [92] and [93]

for more information on its existence and properties.

As discussed in [89], since this problem is generally ill-posed, it requires some

form of regularization. A typical regularization amounts to solving (2.43) in a least-

squares sense. This is realized through the computation of the corresponding Moore–Penrose

pseudo-inverse matrix [94], the definition of which depends on the amount of data

available as specified hereafter. If the system (2.43) is overdetermined, i.e. the num-

ber of measurements accessible is larger than the number of unknowns that need

to be estimated, the corresponding least-squares solution is

δb =−[R ′(b)∗R ′(b)]−1R ′(b)∗R(b). (2.44)

Conversely, if underdetermined, the associated minimal norm solution is

δb =−R ′(b)∗[R ′(b)R ′(b)∗]−1R(b). (2.45)

Let m be the number of measurements available for each of the p sources con-

sidered. Additionally, let n be the number of unknowns to estimate. Then, since

in our setup the number of measurements collected by accounting for all sources,

i.e. mp, is greater than n, the application of (2.44) would require the calculation

of the inverse of the n ×n matrix [R ′(b)∗R ′(b)], which is a highly expensive compu-

tational operation. Therefore, we adopt instead a faster alternative inspired by the

Kaczmarz-method for linear system and by the Algebraic Reconstruction Technique

for computer tomography applications [95], [96] previously employed in ultrasound

tomography [97] and optical tomography [98]. This substitute approach consists of
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addressing Equation (2.43) by iteratively considering a single source at a time. In

other words, for a given source q j ∈ Y , we determine an update δb j ∈ F satisfying

the system:

R ′
j (b)δb j =−R j (b), (2.46)

which, in our numerical setup, is underdetermined. According to (2.45), this yields

a solution of the type:

δb j =−R ′
j (b)∗[R ′

j (b)R ′
j (b)∗]−1R j (b), (2.47)

which can be used to update the admittivity estimate as follow:

b(k+1) = b(k) +δb(k+1)
j . (2.48)

The procedure is then repeated in order to take into account all sources. This de-

fines a full sweep of the considered Kaczmarz-style update scheme.

The main advantage of this approach is that the computation of δb j involves the

inversion of the m ×m matrix [R ′
j (b)R ′

j (b)∗], which numerically is much more effi-

cient to calculate than the corresponding operation in the overdetermined case.

However, since the estimate of the profile b changes at every iteration, the compu-

tation of this inverse needs to be realized p times per Kaczmarz sweep, which might

imply large computational costs. Thus, to circumvent this limitation, we follow the

approximation proposed in [89] that consists of replacing [R ′
j (b)R ′

j (b)∗] with an easy

to compute and invert matrix, namely a small magnitude multiple of the identity

matrix. In the following, we refer to this reconstruction scheme as the Adjoint Field

Method (AFM).

An explicit formula for the computation of the update δb j given by Equation

(2.47) can be derived following [89]. We begin by determining a suitable represen-

tation of the linearized residual operator R ′
j (b). Introducing the perturbations:

b → b +δb j , E j → E j +v j , H j → H j +w j , (2.49)

the corresponding (perturbed) Maxwell’s equations can be written as:

(
−b −δb j ∇×

∇× a

)(
E j +v j

H j +w j

)
=

(
Je

j

Jm
j

)
. (2.50)
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By subtracting the unperturbed Maxwell’s equations from (2.50) and neglecting terms

of higher than linear order, we obtain:(
−b ∇×
∇× a

)(
v j

w j

)
=

(
δb j E j

0

)
. (2.51)

Similarly, from Equation (2.40), the associated perturbed residual operator can be

introduced as follows:

R j (b +δb j ) =G j (b +δb j )−G̃ j . (2.52)

Assuming that a linearized residual operator exists, it is well defined and satisfies

the generalized Taylor expansion:

R j (b +δb j ) = R j (b)+R ′
j (b)δb j +O(||δb j ||2F ), (2.53)

where || · ||F is the canonical norm of the space F , and neglecting terms of higher

than linear order, comparing Equations (2.52) and (2.53) yields:

R ′
j (b)δb j = M j

(
v j

w j

)
. (2.54)

As highlighted in [99], Equation (2.54) can be interpreted as an operational defini-

tion of the linearized residual operator.

We now have all the ingredients required for the explicit computation of the admit-

tivity update δb j . This is realized through the application of Theorem 2.3.1.

Theorem 2.3.1. Let ζ j = (h j 1, ...,h j m j )T ∈ Z j be a given set of measurements. Fur-

thermore, let (E a
j , H a

j )T ∈U be the solution of the adjoint problem:

Λ∗
M (b)

(
E a

j

H a
j

)
=

(
0∑m j

n=1 h j nδ(x −d j n)

)
, (2.55)

with:

Λ∗
M (b) =

(
−b̄ ∇×
∇× ā

)
, b̄ =−iωε+σ, ā =−iωµ,

where the top bar stands for complex conjugate. Then, R ′
j (b)∗ζ j ∈ F is given by

(R ′
j (b)∗ζ j )(x) = Ē j (x) ·E a

j (x), (2.56)
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where u j = (E j , H j )T solves

ΛM (b)u j = q j . (2.57)

A detailed proof of the previous theorem is provided below following [99].

Proof. Given

(
v

w

)
,

(
E a

H a

)
∈U , let us start by computing the following inner product:

〈
ΛM (b)

(
v

w

)
,

(
E a

H a

)〉
L2(Ω)

=
∫
Ω

(∇×w −bv ) · Ē a
d x +

∫
Ω

(∇×v +aw ) · H̄ a
d x =

=
∫
Ω

v · (∇×H a − b̄E a)d x +
∫
Ω

w · (∇×E a + āH a)d x =

=
〈(

v

w

)
,Λ∗

M (b)

(
E a

H a

)〉
L2(Ω)

(2.58)

with Λ∗
M (b) defined in (2.55). Notice that in the derivation of (2.58) we have used

the Green’s formulas [99]:∫
Ω

(∇×w ) · Ē a
d x =

∫
Ω

w · (∇×E a)d x , (2.59)

∫
Ω

(∇×v ) · H̄ a
d x =

∫
Ω

v · (∇×H a)d x . (2.60)

Adding the identity

∫
Ω

w (x) ·
 N∑

n=1
hnδ(x −d n)

d x =
N∑

n=1

[(∫
Ω

w (x)δ(x −d n)d x
)
· h̄n

]
(2.61)

to Equation (2.58) yields:

〈
ΛM (b)

(
v

w

)
,

(
E a

H a

)〉
L2(Ω)

+
∫
Ω

w (x) ·
 N∑

n=1
hnδ(x −d n)

d x =

=
〈(

v

w

)
,Λ∗

M (b)

(
E a

H a

)〉
L2(Ω)

+
N∑

n=1

[(∫
Ω

w (x)δ(x −d n)d x
)
· h̄n

]
. (2.62)

Assuming that the vectors (v j , w j )T , (E j , H j )T and (E a
j , H a

j )T are the solutions of
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(2.54), (2.57) and (2.55) respectively (with N = m j ) and noticing that the first term

on the right side and the second term on the left side coincide, Equation (2.62) can

be simplified as shown below.

Noticing that〈
M j

(
v j

w j

)
,ζ j

〉
Z j

=
〈{∫

Ω
δ(x −d j n)w j (x)d x

}
n=1,...,m j

,
{

h j n
}

n=1,...,m j

〉
Z j

=

=
m j∑

n=1

[(∫
Ω
δ(x −d j n)w j (x)d x

)
· h̄ j n

]
(2.63)

and recalling (2.51) so that

〈(
δb j E j

0

)
,

(
E a

j

H a
j

)〉
L2(Ω)

=
∫
Ω
δb j E j · Ē a

d x = 〈
δb j , Ē j ·E a〉

F ,

using (2.54), Equation (2.62) can be rewritten as:〈
R ′

j (b)δb j ,ζ j

〉
Z j

=
〈
δb j ,R ′

j (b)∗ζ j

〉
F

(2.64)

with R ′
j (b)ζ j defined by (2.56). This concludes the proof.

Therefore, the AFM reconstruction strategy relies on the application of a Kaczmarz-

style algorithm in which the conductivity profile is iteratively updated by consider-

ing one source at a time. In particular, as highlighted in [89], each update is com-

puted by first solving the forward model using the latest best guess of the unknown

profile and then applying the adjoint operator to the differences in computed and

measured data. A summary of this scheme is given in the pseudocode of Algorithm

1.
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Algorithm 1 3D Adjoint Field Method Algorithm

Choose an initial guess b(0)

b(0)
p = b(0)

for i=1:N do

b(i )
0 = b(i−1)

p

for j=1:p do

% loop over all sources

Compute the update direction: δb(i )
j =−R ′

j (b(i )
j−1)∗R j (b(i )

j−1)

(optional) Apply a regularization to δb(i )
j

Update the estimated profile: b(i )
j = b(i )

j−1 +λ(i )δb(i )
j , where λ(i ) > 0

is a small line search amplitude

end for

end for

Algorithm 1 shows that, once the direction δb j has been computed, the ampli-

tude of the admittivity update is specified by the line search parameter λ ∈ R+. The

choice of this parameter is usually a trade-off as it should be large enough to guar-

antee that sufficient progress is made at every iteration but small enough to avoid

overshooting and preserve numerical stability.

Additionally, Algorithm 1 includes the possibility of applying a regularization to the

updates computed. Regularizations generally aim at improving the reconstruction

performance by introducing further information into account [100]. For example,

the so-called gradient projection regularization counters the formation of possible

artefacts with unrealistic physical properties [73]. Namely, it prevents the retrieval

of objects with conductivity values smaller than the backgroundσb by explicitly en-

forcing this constraint. Recalling that the conductivity profile, i.e. the real part of the

admittivity profile, is the only unknown of the problem, the practical implementa-

tion of this regularization can be realized by introducing a projection operator as

follows:

σ(k+1) = Pc (σ(k) +δσ(k+1)
j ), (2.65)
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where

Pc : F → F, Pc (σ(k) +δσ(k+1)
j ) :=

σ(k) +δσ(k+1)
j if σ(k) +δσ(k+1)

j >σb ,

σb otherwise.
(2.66)

2.4 3D Level Set Methods

In this section a shape reconstruction strategy aimed at localizing and characteriz-

ing targets hidden behind walls is proposed.

The introduction of shape reconstruction techniques is motivated by the inade-

quacy of the AFM in retrieving minute target details. In other words, although they

offer a robust and rapid tool to approximately localize objects of interest, voxel-

based adjoint reconstructions are unable to achieve reliable estimates of the shapes

and physical parameters of the targets. This will appear clearly in the following

when numerical experiments are discussed.

Level set methods can be seen as a complementary reconstruction mechanism able

to circumvent the previous limitations. However, due to the local nature of the level

set representation, these schemes often require some initial knowledge of the target

positions. Therefore, combinations of AFM and level set techniques have been ex-

tensively investigated in the literature and proved successful in many applications

[101], [102].

From a historical perspective, the level set idea was originally presented to the in-

verse problem community for the first time by Santosa in the article [103]. In the

electromagnetic context, level set-based algorithms were initially applied to recon-

struct binary media where the unknown physical parameter could only assume two

possible constant values, which were given a priori [91]. In other words, the objec-

tive of these shape reconstructions was the recovery of the unknown interfaces be-

tween different materials starting from field measurements [104], [105]. Nowadays,

level set methods are commonly employed to tackle a variety of imaging problems,

especially in medical imaging and for segmentation tasks [106], [107], [108], [109],

[110], [111]. Other popular applications include X-ray tomography [112], [113], [112]

and Positron Emission Tomography (PET) [114].
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2.4.1 Formulation of the inverse problem in level set terms

The task of localizing targets included inside a monitored building can be addressed

by recovering the associated conductivity profile. In more detail, we characterize

the shape of an unknown object in terms of a smooth function, the so-called level

set function, whose evolution attempts to approximate the (a priori unknown) ge-

ometry of this target starting from through-the-wall data. A rigorous mathematical

formulation of this approach is provided next following the reviews [91] and [115].

We begin by specifying some notation. Let D ⊂Ω,Ω=R3, be a generic bounded

set modelling an object included in the domain of interest. Let b ∈ F be the associ-

ated admittivity profile such that:

b(x) =
bi (x) if x ∈ D,

be (x) if x ∈Ω\ D,
(2.67)

where bi (x) and be (x) are a priori known functions. Notice that although specific

smoothness constraints can be required on these functions, discontinuities may still

occur at the interface ∂D . A level set representation of D requires finding a level set

function φ ∈Φ that satisfies the following condition:φ(x) ≤ 0 if x ∈ D,

φ(x) > 0 if x ∈Ω\ D.
(2.68)

Notice that φ belongs to the function space:

Φ :=
{
φ : Ω→R,

∫
Ω
|φ(x)|2dx <∞

}
, (2.69)

which is assumed equipped with the inner product:

〈
φ1,φ2

〉
Φ =

∫
Ω
φ1(x)φ2(x)dx. (2.70)

Thus, the parameter profile (2.67) can be rewritten in level set terms through the

introduction of the following operator:

Λ : Φ→ F, Λ(φ)(x) = b(x) =
bi (x) if φ(x) ≤ 0,

be (x) if φ(x) > 0.
(2.71)
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Equation (2.71) implies that the shape (of the object) is specified solely by the zero

level set of φ. Also, although a given level set function specifies uniquely a shape

∂D(φ), the inverse is not true. The non-uniqueness of this representation will be

exploited numerically to favour stability. More information will be provided further

below.

Following [91], we assume that the required smoothness of the level set function

guarantees that its gradient∇φ is well defined and not null at the interface positions.

With this hypothesis, the corresponding shape ∂D(φ) can be specified as follows:

∂D(φ) := {x ∈Ω : φ(x) = 0}. (2.72)

According to [91], the previous smoothness constraints could be partially relaxed

but that would then require reformulating Equation (2.72) in terms of the sign change

of φ. For simplicity, this generalization is not considered in this chapter.

We recall that the objective of the reconstruction process is to retrieve a conduc-

tivity profile that satisfies the data. In the level set framework here introduced, this

task translates into the determination of a level set function φ̃ ∈Φ such that b̃ =Λ(φ̃)

satisfies the available through-the-wall measurements. A possible iterative solution

strategy for this non-linear inverse scattering problem is discussed below.

2.4.2 Shape evolution algorithm

The evolution of the level set function is here realized by progressively reducing the

discrepancy between estimations and data following [91]. In practice, this amounts

to decrease, and ideally minimize, the value of a suitably defined cost functional

introduced to express the previous mismatch quantitatively. Coherently with what

discussed in the AFM section, we adopt again a Kaczmarz-style scheme in which

the source antennas are considered one at a time.

We begin by introducing a cost functional of the type:

J j : F →R, J j (b) := 1

2

〈
R j (b),R j (b)

〉
Z j

, (2.73)

where the inner product is computed on the measurement space Z j .
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The reconstruction proceeds by iteratively updating the parameter estimates along

gradient descent directions for (2.73), whose explicit computation is realized here-

after.

Considering a parameter perturbation of the type: b → b +δb j , the corresponding

(perturbed) cost can be introduced as follow:

J j (b +δb j ) = 1

2

〈
R j (b +δb j ),R j (b +δb j )

〉
Z j

. (2.74)

Then, analogously to what done with the AFM, let us assume that a linearized resid-

ual operator exists, is well defined and satisfies the generalized Taylor expansion:

R j (b +δb j ) = R j (b)+R ′
j (b)δb j +O(||δb j ||2F ). (2.75)

Substituting (2.75) into (2.74) yields:

J j (b +δb j ) = 1

2

〈
R j (b)+R ′

j (b)δb j +O(||δb j ||2F ),R j (b)+R ′
j (b)δb j +O(||δb j ||2F )

〉
Z j

=

J j (b)+ 1

2

〈
R ′

j (b)δb j ,R j (b)
〉

Z j
+ 1

2

〈
R j (b),R ′

j (b)δb j

〉
Z j

+O(||δb j ||2F ). (2.76)

Recalling the definition of the adjoint operator:〈
R ′

j (b)∗ζ,b
〉

F
=

〈
ζ,R ′

j (b)b
〉

Z j
, (2.77)

with b ∈ F, ζ ∈ Z j , and using the conjugate symmetry of the inner product, Equation

(2.76) yields:

J j (b +δb j ) = J j (b)+ 1

2

〈
R ′

j (b)∗R j (b),δb j

〉
F
+ 1

2

〈
R ′

j (b)∗R j (b),δb j

〉
F
+O(||δb j ||2F ) =

J j (b)+Re
{〈

R ′
j (b)∗R j (b),δb j

〉
F

}
+O(||δb j ||2F ). (2.78)

According to formula (2.78), the quantity R ′
j (b)∗R j (b) can be considered as the gra-

dient of the cost (2.73) with respect to the parameter b [91].

We now introduce the idea of considering a generic variation of the shape as the

result of the application of a velocity field on its boundary points. Note that alterna-

tive shape evolution models are also possible, see [91].

Formally, we move every point x of the domainΩ via the smooth map x → y(x) such
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that its new position becomes x′ = x+ y(x). The smoothness of this map is essen-

tial to preserve the general structure of the pre-existing shape and ensure that each

point of the original boundary ∂D is mapped to a point of the new boundary ∂D ′.
A modification of the shape produces a variation of the parameter profile. By con-

sidering an infinitesimal shape deformation, the consequential parameter change

can be computed as described next. According to [103], given a test function f ∈
L2(Ω), let us begin by considering the inner product:

〈
δb j , f

〉
L2(Ω) =

∫
Ω
δb j (x) f (x)dx =

∫
sdf(D,D ′)

δb j (x) f (x)dx, (2.79)

where D ′ denotes the new shape and sdf(D,D ′) = (D
⋃

D ′)\(D
⋂

D ′) is the symmetric

difference between D and D ′. Since we are considering an infinitesimal deforma-

tion, we approximate (2.79) as a surface integral of the type:

〈
δb j , f

〉
∂D =

∫
∂D

(bi (x)−be (x))y(x) · n̂(x) f (x)dS, (2.80)

where n̂(x) is the outward normal unit vector. Equation (2.80) is obtained by for-

mally expressing the perturbation as:

δb j (x) = (bi (x)−be (x))y(x) · n̂(x)δ∂D (x), (2.81)

where the Dirac delta function δ∂D (x) (or, more precisely, distribution) is concen-

trated on the boundary ∂D . The presence of the scalar product in Equation (2.81)

takes into account the fact that only the component of the displacement y(x) along

the normal direction n̂(x) contributes to the modification of the parameter distri-

bution.

Formulas (2.80) and (2.81) are then applied to Equation (2.78). Furthermore, an

artificial time-dependence is introduced by considering a velocity field v(x) such

that, for a small time interval τ, the corresponding displacement can be expressed

as y(x) = v(x)t , t ∈ [0,τ]. Hence, neglecting terms higher than liner order, from Equa-

tion (2.78) we have:

J j (b(x, t ))− J j (b(x,0)) = Re
{〈

R ′
j (b(x,0))∗R j (b(x,0)),δb j (x, t )

〉
F

}
=

Re
{〈

R ′
j (b(x,0))∗R j (b(x,0)), (bi (x)−be (x))v(x) · n̂(x)tδ∂D (x)

〉
F

}
, (2.82)



58 CHAPTER 2. 3D TWRI OBJECT RECONSTRUCTIONS

that, in the limit t → 0, yields:

∂J j (b(x, t ))

∂t

∣∣∣
t=0

= Re

{∫
∂D

[
R ′

j (b)∗R j (b)
]

(bi (x)−be (x))F (x)dS

}
, (2.83)

where F (x) = v(x) · n̂(x) is the so-called normal velocity.

Recalling that the general evolution mechanism aims to reduce the value of the cost,

Equation (2.83) shows that this corresponds to the selection of a velocity field such

that:
∂J j

∂t

∣∣∣
t=0

< 0. (2.84)

In fact, for continuity arguments, Equation (2.84) should also hold for a sufficiently

small time interval t ∈ [0,τ]. Hence, the cost decreases in that interval.

Equation (2.84) can be satisfied by adopting as a normal velocity field the follow-

ing steepest descent direction:

FSD (x) =−Re
{

(bi (x)−be (x))R ′
j (b)∗R j (b)

}
, x ∈ ∂D, (2.85)

where the quantity R ′
j (b)∗R j (b) is given by the application of Theorem 2.3.1.

The proof of the previous statement is straightforward and can be realized by di-

rectly substituting (2.85) into (2.83). In fact, this provides eventually:

∂J j

∂t

∣∣∣
t=0

=−
∫
∂D

[
Re{

[
R ′

j (b)∗R j (b)
]

(bi (x)−be (x))}
]2

dS, (2.86)

which is a negative quantity.

The previous calculations provide us with all the ingredients required to derive

the evolution equation of the level set function explicitly.

Let D ⊂ Ω be a given shape represented by a continuously differentiable level set

function φ ∈ Φ such that |∇φ| 6= 0 at the boundary Γ = ∂D . Also, let V(x, t ) be a

given smooth velocity field. Then, recalling Equation (2.72), the differentiation of

φ(x, t ) = 0 with respect to the artificial evolution time t yields:

∂φ

∂t
+∇φ · dx

d t
= 0. (2.87)

By expressing ∇φ in terms of the outward normal n̂(x) starting from the relation
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[116]:

n̂(x) = ∇φ(x)

|∇φ(x)| (2.88)

and replacing dx
d t with V(x, t ), Equation (2.87) can be rewritten as follows:

∂φ

∂t
+F (x, t )|∇φ| = 0, (2.89)

with normal velocity F (x, t ) = V(x, t ) · n̂(x, t ).

Equation (2.89) describes the evolution of the level set function over artificial time.

However, its formal solution requires the definition of the normal velocity every-

where in the domain considered, while the variation of the cost depends only on

the velocity field at the boundary Γ. In shape evolution terms, this corresponds to

finding extension velocities for front propagation using level sets [117], [116].

According to [115], the evolution of the level set function results often in topological

changes like splitting, merging and disappearance of shape components. This has

been proven to be a valuable property in achieving a rapid solution of the under-

lying inverse problem. Although theoretically the choice of the extension velocities

should not affect the capability of the level set scheme to perform such topologi-

cal changes, numerical experiments (see [91]) show that certain options are to be

favoured for stability.

For example, good results have been achieved by extending Equation (2.85) to a

small narrowband neighbourhood of the existing shape by defining the normal ve-

locity as follows:

F (x) =
FSD (x) if x ∈ Bρ(Γ),

0 elsewhere,
(2.90)

where Bρ(Γ) = ∪y∈ΓBρ(y) is a finite neighbourhood of Γ = ∂D for a given small pa-

rameter ρ ∈R+.

We anticipate here that the numerical evolution of the level set function is real-

ized through a Finite Differences-based discretization of Equation (2.89) of the type:

φ(τ)−φ(0)

τ
+F |∇φ| = 0, (2.91)

where τ is a sufficiently small artificial evolution time.

Hence, compactly denoting φ(x, tn) as φ(n), Equation (2.91) leads to the iterative
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reconstruction scheme: φ(n+1) =φ(n) +λδφ(n),

φ(0) =φ(0),
(2.92)

with n = 0,1,2, ... and initial guessφ(0). Furthermore, in Equation (2.92), we adopted

the notation: δφ(n) = −F |∇φ(n)|. The selection of the amplitude of the line search

parameter λ ∈ R+ is realized according to a suitable criterion, the description of

which is provided further below.

As stated in [91], numerical experiments show that the evolution of the shape ac-

cording to Equation (2.92) might produce rough target boundaries. These fine-scale

irregularities are essentially artefacts of the reconstruction process and are not justi-

fied by the measurements. Therefore, to counter this issue, a regularization strategy

is adopted. The main point of the so-called diffusion regularization here consid-

ered is to impose further smoothness constraints on the level set function. Namely,

it requires that φ belongs to the Sobolev space:

W :=
{
φ : φ ∈ L2(Ω),∇φ ∈ L2(Ω),

∂φ

∂ν

∣∣∣
∂Ω

= 0

}
, (2.93)

where ∂·
∂ν

denotes the normal derivative. As a consequence, the descent directions

computed in the original function space Φ need to be replaced by their projections

on W . This leads eventually to a diffusion-type equation for the updates of the level

set function as described in more detail in Appendix 9.4.

A summary of this Kaczmarz-style, level set-based, shape reconstruction proce-

dure is provided by the pseudocode of Algorithm 2.
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Algorithm 2 3D Level Set Reconstruction Algorithm

Choose an initial guess φ(0)

φ(0)
p =φ(0)

for i=1:N do

φ(i )
0 =φ(i−1)

p

for j=1:p do

% loop over all sources

Compute the update direction: δφ(i )
j =−F (i )

j−1|∇φ(i )
j−1|

(optional) Apply a regularization to δφ(i )
j

Update the estimated level set function: φ(i )
j = φ(i )

j−1 +λ(i )
j δφ

(i )
j , where λ(i )

j > 0

is chosen according to Algorithm 3

end for

end for

Compute the parameter profile corresponding to the final estimation φ

2.4.3 Line search procedure

We anticipated before that a stable evolution of the shape reconstruction requires

a suitable choice of the amplitude of the line search parameter λ ∈ R+ included in

Algorithm 2. The mechanism adopted to specify this value is discussed next.

In the Kaczmarz-scheme assumed, at each iteration we replace the full gradient

of the cost functional with a single source approximation. Therefore, the applica-

tion of standard (full) gradient-based line search criteria such as the Wolfe or Armijo

condition [118], [119] cannot be easily realized [120].

Inspired by [121], we adopt an inexpensive backtracking line search procedure that

aims to control the speed of the shape evolution without requiring additional runs

of the Maxwell’s forward solver. This is practically realized by counting the number

Nvox of voxels that change their conductivity value at each iteration and imposing

that it is always included in an a priori defined interval Ivox = [N mi n
vox , N max

vox ]. The

selection of this interval is realized such that N mi n
vox is large enough to guarantee that
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sufficient progress is made at each iteration whilst N max
vox is small enough to avoid

overshooting.

Notice that, although computationally efficient, this procedure does not enforce a

reduction of the cost value at every iteration. Hence, temporary increases might oc-

cur although its global trend is expected to be decreasing.

The implementation of this line search strategy is summarised in the pseudocode

of Algorithm 3.

Algorithm 3 3D Line Search Algorithm

Let bt , φt and δφt be the parameter profile, the level set function and the level set

update at iteration t

Initialize the line search parameter: λt =λ0, with λ0 > 0

Define the parameters α1, α2 such that: 0 <α1 < 1 and α2 > 1

Define the interval Ivox = [N mi n
vox , N max

vox ]

while (Nvox ∉ Ivox) do

φ̃=φt +λtδφt % trial level set function

Compute the corresponding profile: b̃ =Λ(φ̃)

Count the number Nvox of voxels where (bt − b̃) 6= 0

if (Nvox < N mi n
vox ) then

λt =α2λt

end if

if (Nvox > N max
vox ) then

λt =α1λt

end if

end while

return λt
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2.5 Numerical aspects of the 3D reconstruction algo-

rithms

A comprehensive description of the numerical implementation of the previous re-

construction strategies is provided in this section. We begin by discussing the im-

plementation of the AFM scheme. Consequently, we focus instead on the level set-

based shape reconstruction method, which is built as an extension of the previous

one. These codes have been implemented in Python 3.x by the author from the start.

The AFM attempts to retrieve the conductivity profile within a building of in-

terest starting from a set of through-the-wall measurements collected by placing

antennas around its walls. This task relies on the assumptions listed next:

- i ) the background space is homogeneous and isotropic. All background parame-

ters are assumed known;

- i i ) the building of interest is assumed known. Therefore, the geometry of its walls

and the corresponding electromagnetic parameters are not included (as unknowns)

in the underlying inverse problem;

- i i i ) the antenna configuration is fixed and not changed throughout the numerical

experiments performed;

- i v) one or more stationary targets might be included within the building schema-

tized. Their electromagnetic parameters are assumed to be equal to the correspond-

ing background values but their conductivity, which is instead considered unknown.

The locations and shapes of these objects are also unknown.

The starting point of the reconstruction procedure is given by data collected in

correspondence with the true conductivity profile. While this data is given, the true

conductivity profile is a priori unknown and its estimation is the objective of the

process.

Ideally, this data is evaluated experimentally by performing physical measurements

in a realistic setup but, unfortunately, we do not have access to experimental infor-

mation. Thus, we attempt to overcome this limitation by generating it synthetically

using the Maxwell’s solver introduced before.

However, since we employ the same numerical tool to both generate the true data

and solve the inverse problem, we commit the so-called inverse crime [122]. Al-

though in our case this issue can only be avoided by using a different forward model
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for generating the data, we attempt to reduce it by adding Gaussian noise to the

synthetic values produced before. Different noise levels (i.e. 1%, 3% and 5% pertur-

bations) are investigated. This addition also makes our experiments more realistic

as it accounts for the inherent presence of noise in any experimental measurement

process.

The AFM requires an initial guess of the unknown parameter profile. In our ex-

periments, we select as a starting point a setup corresponding to the empty build-

ing. Then, the reconstruction evolves through the adoption of the Kaczmarz-style

update scheme summarised by Algorithm 1.

Notice that each iteration requires solving one forward and one adjoint problem.

Hence, it implies two runs of the Maxwell’s solver. The previous observation clearly

highlights why the optimization of the forward solver is of paramount importance.

In fact, any efficiency improvement of this model produces a much more significant

reduction in computational costs in the global iterative reconstruction process.

The numerical programme used to implement the level set-based reconstruc-

tion scheme is discussed next. It represents an extension of the previous AFM code

in which the assumptions i ), i i ), i i i ) and i v) are still valid although the target con-

ductivity value is here assumed known. In particular, as commonly done in the lit-

erature [101], [123], [124], this parameter is considered constant.

As already described, due to the local nature of the level set updates, a good ini-

tial guess is necessary to identify the targets correctly. This information is obtained

through the adoption of a suitably defined initial level set function. Alternatively,

a few sweeps of the AFM could be performed to infer a similarly looking starting

guess.

Due to the line search procedure employed, the velocity of the shape evolution is

controlled through the selection of the interval Ivox . Moreover, the numerical sta-

bility of the process is further boosted by renormalizing the level set function after

every iteration. This operation is possible since, as anticipated, the level set repre-

sentation of a given shape is not unique. Additionally, a diffusion-type regulariza-

tion is applied to promote smooth boundaries.

We conclude the section with an observation. The Kaczmarz-style approach
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considered in our implementation accounts for one source at a time. However, a

simple generalization of this scheme can be obtained by considering instead a sub-

set of sources at each iteration, computing the corresponding parameter updates

independently and then combining these results. This might be computationally

advantageous if the previous contributions are calculated concurrently. However,

due to the parallel computing implementation of the Maxwell’s solver, the simulta-

neous execution of multiple forward programmes rapidly increases the computa-

tional requirements. For this reason, due to our numerical constraints, this strategy

is not explored in the following.

2.6 3D numerical results

The performance of the previous reconstruction schemes is assessed by running nu-

merical experiments. In this section, we discuss the outcomes of a few selected 3D

simulations that, in our opinion, summarise the main aspects of the investigated

algorithms and highlight their advantages and limitations. We begin by consider-

ing voxel-based AFM techniques while shape reconstructions are analysed subse-

quently. We conclude this brief preamble by specifying that the following experi-

ments are performed on a workstation equipped with an Intel Xeon 3.40GHz CPU.

We assume a 3D setup that models a domain of dimension 21.5m × 21.5m ×
21.5m by using a grid containing 43×43×43 cubic voxels. Each voxel has an edge

length equal to l = 0.5m. A central core block of 23×23×23 voxels is actually devoted

to modelling the configuration of interest while Perfectly Matched Layers (with a to-

tal depth of 10 voxels) surround it in all directions.

Within the core block, a building with size 7.5m× 7.5m× 7.5m is schematized by

specifying its external walls. Each wall has a thickness of 0.5m and an electrical

conductivity σw all = 0.03S/m.

The choice of this setup is a trade-off between the realism of the scenery modelled

and the corresponding computational costs. In fact, although a large number of

voxels implies high computational and memory requirements, a limited number

reduces the capability of representing the target shapes.

A set of antennas is located around the lateral walls of this building but not on top
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or underneath it. Each point-source is modelled as a magnetic dipole with a mag-

netic moment oriented along the z-direction. Similarly, each point-receiver consists

of three magnetic dipoles with moments oriented along the x, y and z axes respec-

tively. Globally, 24 sources and 400 receivers are considered. All antennas operate at

a unique frequency equal to f = 100kHz (i.e. a wavelength of approximately 3km in

free space).

We are aware that the frequency range used in our simulations is lower than the val-

ues commonly considered in TWRI applications, i.e. [0.1,3]GHz [14]. In this sense,

the reconstruction schemes investigated in this chapter should be seen as proof-of-

concept studies realized to define and evaluate a general framework for through-

the-wall target characterization. In other words, replacing our Maxwell’s solver with

an alternative forward model capable of operating reliably in a higher frequency in-

terval where the underlying inverse scattering problem becomes better conditioned

should provide an improvement in performance.

In our setup, each source is associated only with the receivers placed outside the

wall opposite its position. In other words, given a source deployed outside a lateral

wall of the building of interest, the corresponding field is measured only by the re-

ceivers located outside the opposite building lateral wall. However, we recognize

that, according to the application considered and in line with possible logistical

constraints, different antenna configurations might be preferable.

Targets are modelled as objects with conductivity value: σt g = 1.0S/m. The other

electromagnetic parameters are fixed to the following background values: µ= µ0 =
4π× 10−7H/m, ε = ε0 = 8.85× 10−12F/m, σbg = 0.01S/m. These values have been

chosen according to [14].

Adopting a single-target configuration, the results given by Algorithm 1 are shown

in Figure 2.5. We briefly recall that the starting point of this reconstruction is the

empty building, whose features are known a priori. The goal is to retrieve the con-

ductivity profile associated with a given set of through-the-wall measurements and

therefore localize objects of interest possibly present.
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Figure 2.5: AFM reconstruction. Each figure is a 2D section of the 3D do-
main assumed. In particular, section x is taken by considering the cells
having an index equal to 17 along the x-direction. Sections y and z are
analogously defined.
To the left: true conductivity profiles; To the right: cumulative conduc-
tivity updates computed after n = 8 sweeps (only the domain within the
building walls is shown for clarity).
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Figure 2.5 shows that the method is able to localize the correct subregion of the

domain where the target is located. As expected, since the magnitude of the fields

generated by the sources decreases with the distance from the antennas, the update

profile tends to be higher close to the building walls.

Furthermore, Figure 2.5 illustrates that the conductivity profile is not updated out-

side and in correspondence with the walls. This is a consequence of the assump-

tions originally made, which in principle could be relaxed according to the appli-

cation considered. Additionally, due to the gradient projection regularization, no

negative values of the cumulative update are retrieved.

We specify here that this experiment has been run by adopting a line search pa-

rameter λ whose amplitude is progressively reduced at consecutive iterations to

promote numerical stability. In particular, it linearly decreases with respect to the

sweep number.

Overall, this experiment simultaneously shows the capabilities and the limita-

tions of the AFM. Although a good localization of the region of interest is attained

after a limited number of iterations, the algorithm is not able to retrieve minute de-

tails of the target. For example, it is difficult to identify its boundary reliably and,

since the magnitude of the updates is kept small for stability, the estimation of the

object conductivity value is problematic. These observations justify why the AFM

technique is commonly used as an initialization mechanism for more sophisticated

reconstruction schemes.

The results of a shape reconstruction based on Algorithm 2 are discussed here-

after. In this experiment, we refer again to the setup described above but a different

target is considered. The (true) shape of this target is illustrated in Figure 2.6. The

starting point of the reconstruction is an ad-hoc initial guess and the corresponding

evolution is displayed in Figure 2.6.
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Figure 2.6: Level set-based shape reconstruction. For clarity, only the
domain within the building walls is shown. Top row from left to right:
true conductivity profile and initial guess; Middle row from left to right:
shape retrieved after 3 and 5 sweeps; Bottom row from left to right:
shape retrieved after 11 sweeps and total residual cost trend against the
sweep number.
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Figure 2.6 shows that, as the algorithm proceeds, the initial shape is progres-

sively modified to become closer and closer to the true one. This is mathemati-

cally confirmed by the overall decreasing trend of the total cost J =
√∑p

j=1 J 2
j , which

accounts for the contributions associated with all sources. Monitoring this cost

provides an effective modality to assess the evolution of the process. As expected,

since at each iteration the shape update is realised along a descent direction for J j ,

j = 1, ..., p, which might not be a descent direction for the total cost J , temporary in-

creases of this value occur. Eventually, the simulation is stopped when no tangible

shape changes occur at consecutive iterations, namely after n = 11 sweeps.

Overall, the method estimates well the size and the location of the target, pro-

viding additionally some information about its geometry. Notice that despite the

application of the diffusion regularization, the final shape retrieved appears more

irregular than the true one.

We recall that the previous simulation has been performed assuming to know a

priori the exact value of the target conductivity. In other words, only the shape and

location of the object have been the objectives of the reconstruction.

We are aware that this assumption might constitute a limitation. However, we show

below that reasonable target estimates are attainable even when the precedent hy-

pothesis is partially relaxed, namely when only an approximation of the target con-

ductivity value is available.

For example, Figure 2.7 shows the results achieved by repeating the previous simu-

lation twice considering the following target conductivity values: σ1 = 0.5S/m and

σ2 = 1.5S/m.
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Figure 2.7: Level set shape reconstructions performed by assuming in-
correct target conductivity values. For clarity, only the domain within
the building walls is shown. Top row: shape retrieved after 11 sweeps
and total cost trend withσ1 = 0.5S/m. Bottom row: shape retrieved after
11 sweeps and total cost trend with σ2 = 1.5S/m.

A visual analysis of Figure 2.7 shows that the adoption of an incorrect value of

the target conductivity leads to a moderate scaling of the recovered object. In more

detail, the underestimation of σ is compensated by retrieving a shape larger than

the true one. Conversely, its overestimation produces a smaller and jagged geom-

etry. Notice that the corresponding total cost trends are both more irregular than

the one shown in Figure 2.6. Nevertheless, these experiments suggest that the anal-

ysed level set-based technique is able to provide a reasonable characterization of

the unknown object despite the adoption of an a priori incorrect target conductivity

estimate.
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2.7 Summary of the chapter

In this chapter, we introduced Maxwell’s equations as a model to describe the prop-

agation of electromagnetic fields in 3D domains. A Finite Differences Frequency

Domain approximation was considered to implement these equations numerically.

This provided us with a forward solver that we used to synthetically generate data

corresponding to a given system configuration, thus overcoming the lack of exper-

imental measurements associated with this PhD project. Subsequently, we formu-

lated the task of identifying and characterizing targets of interest hidden inside a

building as a 3D inverse scattering problem starting from through-the-wall mea-

surements. Therefore, we investigated the applicability of different reconstruction

schemes by performing numerical experiments. In agreement with the existing lit-

erature, these experiments confirmed the ability of adjoint voxel-based algorithms

to rapidly estimate target locations whereas level set-based reconstructions proved

effective in recovering information on the target geometry. Eventually, the robust-

ness of these algorithms with respect to specific aspects of the reconstruction modal-

ities was discussed and improved by adopting tailor-made line search criteria.



Chapter 3

2D TWRI object reconstructions

In the previous chapter we discussed the possibility of retrieving information on ob-

jects of interest hidden behind walls in 3D setups. Although good results have been

achieved considering different reconstruction techniques, we have highlighted how

the high computational requirements of the employed Maxwell’s solver limit the

investigation of the underlying inverse problem due to our numerical constraints.

To overcome the previous limitations, we introduce here a 2D simplification of the

previous Maxwell’s model where the propagation of the electromagnetic fields is

described according to the Helmholtz equation. This produces a reduction in the

complexity of the forward solver allowing the adoption of more sophisticated re-

construction techniques for TWRI applications.

The structure of this chapter is outlined hereafter. We start by introducing and dis-

cretizing the Helmholtz equation by adopting a Finite Differences Frequency Do-

main approximation. This provides a numerically efficient forward model whose

implementation is described next. Afterwards, we formulate the task of charac-

terizing and localizing stationary objects of interest starting from through-the-wall

measurements as a 2D inverse scattering problem, for which specific reconstruction

techniques are introduced. In particular, we begin by considering pixel-based ad-

joint schemes equipped with suitable regularizations for recovering the unknown

permittivity profiles. Then, shape methods based on level set descriptions of the

domain are examined. Inspired by previous studies on breast cancer detection, we

generalize the above techniques to simultaneously estimate both the geometry and

electromagnetic properties of the unknown targets. This leads to the definition of

innovative gradient-based joint reconstructions and sampling methods whose per-

formances are investigated numerically.

73
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3.1 The Helmholtz model

In this simplified framework, the propagation of the electromagnetic fields is de-

scribed in terms of Transverse Magnetic (TM) waves [125], [126] according to the

2D Helmholtz equation [127]:

∇2u(x)+k2(x)u(x) = q(x), (3.1)

where x ∈Ω, Ω= R2, u denotes one component of the electric field and q identifies

the external sources. Here the wavenumber k satisfies the relation:

k2(x) =ω2µ0ε0

[
ε(x)+ i

σ(x)

ωε0

]
, (3.2)

where f indicates the frequency, ω = 2π f the angular frequency, µ0 the magnetic

permeability in free space, ε0 the dielectric permittivity in free space, ε(x) the relative

permittivity and σ(x) the electrical conductivity.

Similarly to Chapter 2, we employ the notation:

k2(x) = aε(x)+ i bσ(x), (3.3)

where a =ω2µ0ε0 and b =ωµ0 are both assumed as positive definite quantities.

An explicit derivation of the Helmholtz equation from Maxwell’s equations is dis-

cussed in Appendix 9.2.

Equation (3.1) admits a unique solution when supplemented with the so-called

Sommerfeld radiation condition as boundary condition at infinity:

lim
r→∞

p
r

(
∂u

∂r
− i k0u

)
= 0, (3.4)

with r = ||x||2 and where the limit holds uniformly in all directions [127]. Here k0

denotes the wavenumber in free space.

According to [102], Equation (3.4) ensures the absence of incoming waves from an

infinite distance and requires that the field magnitude be zero at the margins of the

domain.

For homogeneous domains, a unique analytical solution of Equation (3.1) is attain-

able and can be derived as shown in Appendix 9.5. However, analytical solutions are
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not available when more general inhomogeneous domains are considered. There-

fore, in these cases, numerical approximations of these solutions are sought starting

from a discretization of the Helmholtz model. This will be realized in the following

section.

3.1.1 Numerical implementation of the Helmholtz model

In this section a Finite Differences discretization of the Helmholtz model is derived

and implemented numerically. Although Equation (3.1) admits an analytical so-

lution in homogeneous domains, it cannot be easily extended to inhomogeneous

setups. Thus, since the presence of targets results in discontinuities of the electro-

magnetic parameter profiles, a numerical approximation of the Helmholtz solution

is sought.

Similarly to the strategy outlined in 3D for Maxwell’s equations in Chapter 2, we

model a domain of interest by considering a 2D pixel grid including nx and ny pixels

along the x and y directions respectively. Each pixel has a size of h×h. Furthermore,

to schematize the propagation of the fields in an infinite domain and reduce the

creation of finite volume artefacts, a sequence of Perfectly Matched Layers (PMLs)

is assumed. Let npml be the number of PMLs considered. Then, the total num-

ber of pixels in the grid can be written as Ntot = Nx Ny , with Nx = nx + 2npml and

Ny = ny +2npml .

Practically, the selection of these parameters requires a trade-off between model

accuracy and computational costs. In fact, a fine grid (i.e. a high number of pixels)

promotes high representation accuracy but simultaneously increases the computa-

tional complexity involved.

A Finite Differences Frequency Domain (FDFD) approximation of the Helmholtz

equation is derived next according to [128].

We begin by conveniently rewriting Equation (3.1) as follows:

c(x)
∂

∂x

(
c(x)

∂u

∂x

)
+ c(y)

∂

∂y

(
c(y)

∂u

∂y

)
+k2(x, y)u = q(x, y), (3.5)
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where the auxiliary function

c :R→C, c(t ) =


ε0ω
ε0ω+iσ(t ) , inside the PMLs,

1, outside the PMLs,
(3.6)

is introduced to take into account the presence of the PMLs. Here,σ(t ) =σ f

( |t |−α
hnpml

)p
,

where σ f , p,α ∈ R are free parameters the definition of which is realized according

to [129].

It is straightforward to verify that the computation of the derivatives in (3.5) yields:

c(x)c ′(x)
∂u

∂x
+ c2(x)

∂2u

∂x2
+ c(y)c ′(y)

∂u

∂y
+ c2(y)

∂2u

∂y2
+k2(x, y)u = q(x, y). (3.7)

Starting from (3.7), a discretized version of the Helmholtz equation can be achieved

by expressing the derivatives involved in terms of a (centred) Finite Differences ap-

proximation. This is realized below.

Denoting as u(i , j ) the value of the field component evaluated in correspon-

dence of the grid location (i , j ), 1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny , and recalling that each pixel

has size h ×h, the Finite Differences approximation of the considered derivatives

can be written as follows:

∂u

∂x
(i , j ) = u(i +h, j )−u(i −h, j )

2h
+O(h2), (3.8)

∂u

∂y
(i , j ) = u(i , j +h)−u(i , j −h)

2h
+O(h2), (3.9)

∂2u

∂x2
(i , j ) = u(i +h, j )−2u(i , j )+u(i −h, j )

h2
+O(h2), (3.10)

∂2u

∂y2
(i , j ) = u(i , j +h)−2u(i , j )+u(i , j −h)

h2
+O(h2). (3.11)

Therefore, neglecting terms higher than linear order and substituting the previous

approximations into (3.7) yields:

1

h2

[
ŝ(i )u(i +h, j )+ s(i )u(i −h, j )+ ŝ( j )u(i , j +h)+ s( j )u(i , j −h)

]+
1

h2

[
h2k2(i , j )−2c2(i )−2c2( j )

]
u(i , j ) = q(i , j ), (3.12)
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with

ŝ(t ) = c2(t )+ hc(t )c ′(t )

2
, (3.13)

s(t ) = c2(t )− hc(t )c ′(t )

2
. (3.14)

Hence, coherently with the 3D discretization procedure, the numerical solution of

the Helmholtz equation is reduced to the solution of a linear system. Thus, numeri-

cal iterative solvers such as the BiCGSTAB algorithm can be employed to determine

a discrete approximation of the electromagnetic fields.

3.2 2D Adjoint Field Methods

In this section we formulate the inverse scattering problem underlying the task of

localizing and characterizing objects of interest included within a monitored build-

ing. Analogously to what realized in 3D, we attempt to identify these targets start-

ing from through-the-wall measurements by reconstructing parameter profiles that

match these observations. In particular, we assume that the background parame-

ters and the building features are known a priori while the objective is to retrieve the

unknown scattering relative permittivity profile.

This leads to the formulation of a non-linear inverse scattering problem, whose so-

lution is a challenging mathematical task. In fact, at the frequency range of interest,

the presence of multiple scattering effects renders this problem ill-posed and there-

fore difficult to solve.

We start by specifying that throughout this chapter all electromagnetic param-

eters are assumed known but the relative permittivity ε(x), x ∈Ω, Ω = R2. Further-

more, we explicitly distinguish the scattering relative permittivity contribution εs by

adopting the notation: ε(x) = εb(x)+εs(x), where εb is the known background distri-

bution. Then, according to Chapter 2, some operators are introduced to formulate

the considered inverse problem into mathematical terms following [127].

Let us begin by defining some useful function spaces, starting with the space of

relative scattering permittivities F :

F :=
{
εs : Ω→R,

∫
Ω
|εs(x)|2dx <∞

}
, (3.15)
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equipped with the inner product:

〈εs1,εs2〉F =
∫
Ω
εs1(x)εs2(x)dx. (3.16)

Similarly, the space of the measurements corresponding to the j−th source can be

introduced as:

Z j :=
{
ζ j = (e j 1, ...,e j m j ), e j n ∈C3,n = 1, ...,m j

}
, j = 1, ..., p, (3.17)

where m j is the number of receivers associated with the source considered, equipped

with the inner product:

〈
ζ j 1,ζ j 2

〉
Z j

=
m j∑

n=1
e j 1,n · ē j 2,n , (3.18)

where the bar stands for complex conjugate.

A space of the states of the system is introduced next:

U :=
{

u : Ω→C,
∫
Ω
|u(x)|2dx <∞;

∫
Ω
|∇u(x)|2dx <∞

}
, (3.19)

equipped with the inner product:

〈u1,u2〉U =
∫
Ω

u1(x)ū2(x)dx. (3.20)

Finally, a space of the sources is introduced:

Y :=
{

q : Ω→C,
∫
Ω
|q(x)|2dx <∞

}
, (3.21)

equipped with the inner product:

〈q1, q2〉Y =
∫
Ω

q1(x)q̄2(x)dx. (3.22)

On the previous spaces some useful operators are defined following [127]. We

start by considering a measurement operator designed to return the value of the

electric fields at the receiver locations. It can be specified as follows:

M j : U → Z j , M j u j k :=
(
u j k (x j 1), ...,u j k (x j m j )

)T
, (3.23)
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for j = 1, ..., p and k = 1, ...,K . Here u j k ∈U is the field generated by the j -th source

operating at the k-th frequency.

Let us denote as G̃ j k ∈ Z j the true data collected at the receivers for a given source

q j and a frequency fk , namely the measurements associated with the unknown per-

mittivity distribution whose estimate is the objective of the reconstruction. Then,

the mismatch between the estimations associated with a given profile ε and the true

data G̃ j k can be expressed by introducing the residual operator:

R j k : F → Z j , R j k (εs) := M j u j k −G̃ j k , (3.24)

where u j k solves the Helmholtz equation:

∇2u j k + [ak (εb +εs)(x)+ i bkσ(x)]u j k = q j . (3.25)

From Equation (3.24), a quantitative measure of this discrepancy can be obtained

through the definition of a cost functional of the type:

J j k : F →R, J j k (εs) := 1

2
〈R j k (εs),R j k (εs)〉Z j . (3.26)

We anticipate here that, in the following, the reconstruction of the unknown per-

mittivity profile will be realized by employing an iterative scheme whose evolution

is driven by the attempt to reduce and ideally minimize the cost (3.26).

As already mentioned, the solution of the considered inverse problem consists

in determining a scattering permittivity profile that satisfies the data G̃ j k . Mathe-

matically, this corresponds to the identification of a profile ε̃s ∈ F such that:

M j ũ j k = G̃ j k , (3.27)

where ũ j k satisfies:

[∇2 +ak (εb + ε̃s)+ i bkσ]ũ j k = q j , (3.28)

with j = 1, ..., p, k = 1, ..,K .

Alternatively, recalling definition (3.24), the same problem can be formulated as the

determination of a scattering permittivity profile ε̃s ∈ F such that:

R j k (ε̃s) = 0, (3.29)
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with j = 1, ..., p, k = 1, ...,K .

From Equation (3.29), an iterative Newton’s solution can be derived analogously to

what realized in 3D. Recalling formula (2.42), this strategy eventually yields a per-

mittivity update εs → εs +δεs such that:

δεs =−R ′
j k (εs)∗R j k (εs), (3.30)

where R ′
j k (εs)∗ is the adjoint of the linearized residual operator R ′

j k (εs).

Let δεs ∈ F and δu j k ∈U be small perturbations so that εs → εs +δεs and u j k →
u j k +δu j k . Then, according to [127] and [103], the corresponding Helmholtz equa-

tion can be introduced as follows:

[∇2 +ak (εb +εs +δεs)(x)+ i bkσ(x)](u j k +δu j k )(x) = q j (x). (3.31)

Subtracting Equation (3.1) from (3.31) and neglecting terms higher than linear order

yields:

[∇2 +ak (εb +εs)(x)+ i bkσ(x)]δu j k (x) =−akδεs(x)u j k (x). (3.32)

Equation (3.32) provides the variation of the electric field due to a given perturba-

tion of the scattering permittivity.

Let us assume that a linearized operator R ′
j k : F → Z j exists, is well defined and

satisfies the generalized Taylor expansion:

R j k (εs +δεs) = R j k (εs)+R ′
j k (εs)δεs +O(||δεs ||2F ). (3.33)

At the same time, Equation (3.24) implies that:

R j k (εs +δεs) = M j (u j k +δu j k )−G̃ j k , (3.34)

where the relation between δεs and δu j k is given by (3.32). Thus, using the linearity

of the measurement operator with respect to the field yields:

R j k (εs +δεs) = R j k (εs)+M jδu j k . (3.35)

Hence, comparing (3.33) and (3.35) and neglecting terms higher than liner order
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provides:

R ′
j k (εs)δεs = M jδu j k , (3.36)

which can be interpreted as the operational definition of the linearized residual op-

erator.

Formulas (3.32) and (3.36) can be used to compute an explicit update for the scat-

tering permittivity by applying the following theorem.

Theorem 3.2.1. Let ζ = (ζ j 1, ...,ζ j m j )T ∈ Z j be a given set of measurements and let

x j d , d = 1, ..,m j , be the detector positions corresponding to a source q j ∈ Y . Then, the

action of the adjoint operator R ′
j k (εs)∗ on ζ is given by

R ′
j k (εs)∗ζ=−ak Re{u j k z j k }, (3.37)

where u j k solves:

∇2u j k +κk u j k = q j , (3.38)

and z j k solves the ‘adjoint equation’:

∇2z j k +κk z j k =
m j∑

d=1
ζdδ(x−x j d ) (3.39)

with

κk (x) = ak [εb(x)+εs(x)]+ i bkσ(x) (3.40)

and ak ,bk defined in Equation (3.3).

The proof of this theorem follows that of the analogous 3D theorem. However, it

is briefly outlined below for completeness.

Proof. Let us start by computing the following inner product:

〈(∇2 +κk )δu j k (x), z j k (x)〉L2(Ω)) =
∫
Ω

(∇2δu j k )z j k dx+
∫
Ω
κkδu j k z j k dx, (3.41)

where δu j k satisfies (3.32). Then, by using Green’s identities, Equation (3.41) yields:

〈(∇2 +κk )δu j k , z j k〉L2(Ω) = 〈δu j k , (∇2 +κk )z j k〉L2(Ω). (3.42)
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Adding the identity:

∫
Ω
δu j k (x)

m j∑
d=1

ζdδ(x−x j d )dx =
m j∑

d=1
ζd

∫
Ω
δu j k (x)δ(x−x j d )dx (3.43)

to Equation (3.42), where δ(·) denotes the Dirac delta function, and noticing that the

right side of (3.42) coincides with the left side of (3.43), it follows that

〈(∇2 +κk )δu j k (x), z j k (x)〉L2(Ω) =
m j∑

d=1
ζd

∫
Ω
δu j k (x)δ(x−x j d )dx. (3.44)

Recalling definition (3.23), the right term of Equation (3.44) can be rewritten as

m j∑
d=1

ζd

∫
Ω
δu j k (x)δ(x−x j d )dx = 〈M jδu j k , ζ〉Z j . (3.45)

Thus, the application of (3.36) yields:

〈M jδu j k , ζ〉Z j = 〈R ′
j k (εs)δεs , ζ〉Z j = 〈δεs , R ′

j k (εs)∗ζ〉F , (3.46)

where the adjoint operator definition is used in the last step.

Moreover, recalling (3.32), the left term of (3.44) can be rewritten as

〈(∇2 +κk )δu j k (x), z j k (x)〉L2(Ω) = 〈−akδεs(x)u j k (x), z j k (x)〉L2(Ω) =

−ak

∫
Ω
δεs(x)u j k (x)z j k (x)dx =−ak〈δεs ,Re{u j k z j k }〉F , (3.47)

where the introduction of the real part is necessary since the relative permittivity

is a real quantity. Finally, comparing (3.46) and (3.47) yields (3.37). This ends the

proof.

We now have all the ingredients to specify an iterative adjoint-based reconstruc-

tion strategy. We refer to it in the following as the 2D Adjoint Field Method (AFM).

Starting from a suitable initial guess ε0 of the unknown scattering permittivity dis-

tribution, we update iteratively the estimated profile εs according to the following

equation: ε
(n+1)
s (x) = ε(n)

s (x)+δε(n+1)(x),

ε(0)
s (x) = ε0(x),

(3.48)
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with n = 0,1,2, ... . In Equation (3.48), ε(n)
s denotes the scattering permittivity approx-

imation at iteration n−th while the subsequent update δε(n+1) is computed as:

δε(n+1)(x) =−η[R ′
j k (ε(n)

s )∗R j k (ε(n)
s )](x). (3.49)

We anticipate here that in our numerical experiments we adopt a null initial guess,

i.e. ε0(x) = 0, ∀x ∈Ω, while the parameter η ∈R+ is kept small for numerical stability.

The evolution of the AFM proceeds by reducing the mismatch between the field

predictions associated with an estimated permittivity profile and the true data. In

other words, Equation (3.49) defines descent directions for the cost (3.26) as explic-

itly shown below. Let us begin by considering the perturbed cost:

J j k (εs +δεs) = 1

2

〈
R j k (εs +δεs),R j k (εs +δεs)

〉
Z j

, (3.50)

which, substituting Equation (3.33), can be rewritten as:

J j k (εs+δεs) = 1

2

〈
R j k (εs)+R ′

j k (εs)δεs +O(||δεs ||2F ),R j k (εs)+R ′
j k (εs)δεs +O(||δεs ||2F )

〉
Z j

=

1

2

〈
R j k (εs),R j k (εs)

〉
Z j

+ 1

2

〈
R ′

j k (εs)δεs ,R j k (εs)
〉

Z j
+

1

2

〈
R j k (εs),R ′

j k (εs)δεs

〉
Z j

+O(||δεs ||2F ). (3.51)

Using the definition of adjoint operators and the symmetric property of the inner

product, Equation (3.51) simplifies to:

J j k (εs +δεs) = J j k (εs)+
〈

R ′
j k (εs)∗R j k (εs),δεs

〉
F
+O(||δεs ||2F ). (3.52)

Therefore, substituting δεs(x) =−η[R ′
j k (εs)∗R j k (εs)](x) into (3.52) yields:

J j k (εs +δεs) = J j k (εs)−η||R ′
j k (εs)∗R j k (εs)||2F +O(||δεs ||2F ), (3.53)

which, neglecting terms higher than linear order, implies

J j k (εs +δεs)− J j k (εs) < 0. (3.54)

This calculation proves that updating the permittivity profile along the directions
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(3.49) produces a reduction of the cost. Then, this operation is repeated iteratively

until the cost is sufficiently reduced or a specific stopping criterion is met. Overall,

the update process resembles the steepest gradient descent algorithm [73] broadly

used in standard optimization theory.

From Equation (3.48), the adoption of a Kaczmarz scheme in which at each iter-

ation the parameter is updated by considering the information corresponding to a

single frequency only leads to the reconstruction strategy outlined in Algorithm 4.

Algorithm 4 2D Adjoint Field Method Algorithm

Initialize the permittivity profile ε0

t = 0

while ε not converged do

for k=1:K do

% loop over all frequencies

t = t +1

Compute the update direction: δε(k)
t =−R ′

k (εt−1)∗Rk (εt−1)

(optional) Apply a regularization to δε(k)
t

Update the permittivity profile: εt = εt−1 +ηtδε
(k)
t ,

where ηt > 0 is a small line search amplitude

end for

end while

Notice that a stacked residual operator on all sources is considered here. This is

justified by the numerical structure of the Helmholtz solver and will be discussed in

more detail further below.

We conclude the section by specifying that Algorithm 4 implies the possibility of

boosting the reconstruction performance through the application of suitable regu-

larization strategies. More information on this aspect will be provided in the follow-

ing sections, where different regularization approaches are introduced.
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3.2.1 Gradient Projection Regularization

The first regularization scheme considered is the so-called gradient projection reg-

ularization [73].

The main idea is to boost the reconstruction performance by countering the forma-

tion of artefacts with unrealistic physical properties. In more detail, since we do not

expect the presence of objects having a relative permittivity smaller than the back-

ground value, we explicitly enforce this constraint by modifying the update equa-

tion as discussed next.

Let Fc be a subset of the space of permittivities F such that:

Fc := {εs ∈ F : εs(x) ≥ 0 ∀x ∈Ω}. (3.55)

Then, we define a Euclidean projection P̃c (εs) as the mapping from F to Fc such

that:

P̃c (εs) := argmin
ε∗s ∈Fc

||εs −ε∗s ||F . (3.56)

Therefore, by introducing a projection operator:

Pc : F → Fc , Pc (εs) :=
εs if εs ≥ 0,

0 otherwise,
(3.57)

a gradient projection regularized modification of Equation (3.48) can be achieved

as follows: ε
(n+1)
s (x) = Pc (ε(n)

s (x)+δε(n+1)(x)),

ε(0)
s (x) = ε0(x),

(3.58)

with n = 0,1,2, ... .

3.2.2 Sparsity Regularization

The second type of regularization considered is the so-called sparsity regularization

[130], [131]. The advantage given by this regularization is that it allows to counter

the over-smoothed reconstructions that are generally provided by the AFM, even

when the true profile contains shapes with sharp boundaries. In other words, it

promotes the definition of compactly supported regions against the background

having higher permittivity values. As recently shown in [101], this regularization
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is particularly suitable for the characterization of isolated targets embedded in sim-

ple (known) environments.

A concise mathematical description of the sparsity regularization is discussed

below following [132]. A penalty term is added to Equation (3.26) in order to define

a new cost functional of the type:

J R
j k (ε) = J j k (ε)+α||εs ||1, (3.59)

where α ∈R+ is a regularization parameter and || · ||1 is the standard L1-norm.

Then, as carefully discussed in [131], the minimization of (3.59) is realized by locally

approximating the cost J R
j k with the following surrogate quadratic form:

J R
j k (ε) ≈ J R

j k (ε(k))+ (3.60)

〈
εs −ε(k)

s ,∇J j k (ε(k))
〉

L2(Ω)
+ 1

2τ
||εs −ε(k)

s ||2F +α||εs ||1,

where ε(k)
s is the estimation of the scattered permittivity at the k-th iteration of the

reconstruction process. Here, the parameters τ,α ∈ R+ define step size amplitudes.

According to [131], this local approximation leads to an update formula of the type:

ε(k+1)
s = Sατ(ε(k)

s −τ∇J j k (ε(k))), (3.61)

where the shrinkage operator Sλ, with λ ∈R+, is defined as follows:

Sλ : F → F, Sλ(s) :=
s if |s| >λ,

0 otherwise.
(3.62)

We refer to [133], [134] and [135] for a rigorous analysis of the properties of the latter

operator.

Equation (3.61) shows that, in practice, the implementation of this regulariza-

tion is a two steps procedure. Firstly, an AFM iteration is realized to compute a

candidate permittivity update; secondly, the shrinkage operator is applied to set to

zero small magnitude contributions.

Therefore, a further extension aimed at incorporating a gradient projection regu-

larization can be obtained by substituting the AFM iteration in the first step of the
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sparsity implementation with Equation (3.58). Mathematically, this corresponds to

the following update scheme:ε
(n+1)
s (x) = Sλ(Pc (ε(n)

s (x)+δε(n+1)(x))),

ε(0)
s (x) = ε0(x),

(3.63)

with n = 0,1,2, ... .

3.3 2D Level Set Methods

A level set extension of the previous AFM algorithm is proposed in this section. The

goal is to perform shape reconstructions to retrieve targets of interest hidden inside

a building starting from through-the-wall measurements. The procedure here out-

lined is conceptually analogous to the level set reconstruction scheme developed

for 3D setups in Chapter 2. Also, we highlight clearly that the content of this section

follows closely the reviews [91] and [115].

In addition to the function spaces defined before (see Equations (3.15), (3.17),

(3.19) and (3.21)), let us introduce a function space of the level set functions as fol-

lows:

Φ :=
{
φ : Ω→R,

∫
Ω
|φ(x)|2dx <∞

}
, (3.64)

withΩ=R2, equipped with the inner product:

〈
φ1,φ2

〉
Φ =

∫
Ω
φ1(x)φ2(x)dx. (3.65)

Furthermore, let us assume the presence of a target with known relative permittivity

value ε̂ ∈R+ such that the corresponding permittivity profile can be written as:

ε(x) =
ε̂ if x ∈ D,

εb(x) if x ∈Ω\ D,
(3.66)

where D ⊂Ω is a compact domain defining the shape of the object and εb ∈ F is a

known bounded function modelling the background environment.

Analogously to Chapter 2, a level set representation of this profile can be attained
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by considering a smooth level set function φ ∈Φ such that:φ(x) ≤ 0 if x ∈ D,

φ(x) > 0 if x ∈Ω\ D.
(3.67)

Notice that although the previous definitions have been introduced by referring to

a single object, the corresponding multi-target extensions are straightforward.

Additionally, let us introduce an operator Λ to map a given level set function φ ∈Φ
to the corresponding scattering permittivity distribution εs ∈ F defined as follows:

Λ : Φ→ F, Λ(φ)(x) = εs(x) =
ε̂−εb(x) if φ(x) ≤ 0,

0 if φ(x) > 0.
(3.68)

Similarly, a residual operator expressed in terms of the level set function is intro-

duced next:

T j k : Φ→ Z j , T j k (φ) := R j k (Λ(φ)), (3.69)

with R j k (εs) defined by Equation (3.24).

Definition (3.69) allows to reformulate the inverse problem as the task of finding a

level set function φ̃ ∈Φ such that:

T j k (φ̃) = 0, (3.70)

with j = 1, ..., p, k = 1, ...,K . Hence, a Newton’s solution to this problem can be found

analogously to what described in Chapter 2. In other words, an iterative procedure

is employed to update the level set function such that φ→ φ+δφ where, at each

iteration, δφ satisfies the relation:

T ′
j k (φ)δφ=−T j k (φ). (3.71)

Eventually, this leads to an update formula of the type:

δφ=−T ′
j k (φ)∗T j k (φ), (3.72)

where T ′
j k (φ)∗ is the adjoint of the linearized residual operator T ′

j k (φ).

Equation (3.72) is the 2D equivalent of Equation (2.92), derived instead for 3D level

set reconstructions.
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Moreover, similarly to what shown in the AFM derivation, Equation (3.72) defines

descent directions for the cost functional:

Ĵ j k : Φ→R, Ĵ j k (φ) := 1

2
〈T j k (φ),T j k (φ)〉Z j . (3.73)

An explicit computation of the update (3.72) requires to derive linearized approxi-

mations of the operators introduced before. This is realized below.

Let us begin by computing the variation of the scattering permittivity δεs ∈ F due

to an infinitesimal change of the level set function δφ ∈Φ. According to [103], this

quantity is given by

δεs(x) =−(ε̂−εb)
δφ(x)

|∇φ(x)|
∣∣∣

x∈Γ
, (3.74)

whereΓ= ∂D(φ) is the boundary associated with the zero level set ofφ. Analogously,

following [103], we define the linearized operator:

Λ̃′ : Φ→ F, (Λ̃′(φ)δφ)(x) =−(ε̂−εb(x))
δφ(x)

|∇φ(x)|δΓ(x), (3.75)

where δΓ(x) is the Dirac delta distribution concentrated on Γ.

As described in [102], due to the presence of the Dirac delta in (3.75), the right mem-

ber of that expression is not an element of the space of the permittivities. Therefore,

in the following, we approximate (3.75) by the smoother operator:

Λ′ :Φ→ F,
(
Λ′(φ)δφ

)
(x) =−(ε̂−εb(x))

δφ(x)

|∇φ(x)|Cρ(Γ)χBρ(Γ)(x), (3.76)

where

χBρ(Γ)(x) =
1 if x ∈ Bρ(Γ)

0 otherwise
(3.77)

is a narrowband function centred in Bρ(Γ) = ∪y∈ΓBρ(y), a finite neighbourhood of

Γ for a given small parameter ρ ∈ R+. Also, following [127], we assume Cρ(Γ) =
L(Γ)/Vol(Bρ(Γ)), where L(Γ) = ∫

ΩδΓ(x)dx is the length of the boundaryΓ and Vol(Bρ(Γ))

is the volume of Bρ(Γ).

Formula (3.72) requires the computation of the adjoint of the linearized residual

operator. Formally, applying the chain rule to definition (3.69) yields:

T ′
j k :Φ→ Z j , T ′

j k (φ)δφ= R ′
j k (Λ(φ))Λ′(φ)δφ. (3.78)
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Therefore, the action of its ajdoint T
′∗
j k : Z j →Φ on ζ ∈ Z j can be derived as follows:

T ′
j k (φ)∗ζ=Λ′(φ)∗R ′

j k (Λ(φ))∗ζ. (3.79)

Equation (3.79) requires to specify the adjoint operator Λ
′∗ : F → Φ, which can be

derived from the following inner product:

〈Λ′(φ)δφ,δεs〉F =
∫
Ω
−(ε̂−εb(x))

δφ(x)

|∇φ(x)|Cρ(Γ)χBρ(Γ)(x)δεs(x)dx =

∫
Ω
−δφ(x)(ε̂−εb(x))

δεs(x)

|∇φ(x)|Cρ(Γ)χBρ(Γ)(x)dx = 〈δφ(x),Λ′(φ)∗δεs(x)〉Φ. (3.80)

Hence, from Equation (3.80), it follows that:

(Λ′(φ)∗δεs)(x) =−(ε̂−εb(x))
δεs(x)

|∇φ(x)|Cρ(Γ)χBρ(Γ)(x). (3.81)

Therefore, recalling (3.78), (3.81) and (3.37), the action of the adjoint of the lin-

earized operator T
′∗
j k : Z j →Φ on ζ ∈ Z j can be written as

T ′
j k (φ)∗ζ=Λ′(φ)∗R ′

j k (Λ(φ))∗ζ= ak [ε̂−εb]

|∇φ| Re{u j k z j k }Cρ(Γ)χBρ(Γ), (3.82)

where u j k and z j k solve (3.38) and (3.39) respectively.

Eventually, the computation of the update of the level set function can be finalized

by recalling formula (3.72).

Thus, adopting a Kaczmarz scheme similarly to what realized with the AFM, a

level set-based shape reconstruction strategy can be introduced as outlined in the

pseudocode of Algorithm 5.
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Algorithm 5 2D Level Set Reconstruction Algorithm

Initialize the level set function φ0

t = 0

while φ not converged do

for k=1:K do

% loop over all frequencies

t = t +1

Compute the update direction: δφ(k)
t =−T ′

k (φt−1)∗Tk (φt−1)

(optional) Apply a regularization to δφ(k)
t

Update the level set function: φt =φt−1 +ηtδφ
(k)
t ,

where ηt > 0 is chosen according to the line search Algorithm 7

end for

end while

Compute the permittivity profile corresponding to the final estimation φ

Notice that a stacked residual operator on all sources is considered here. This is

justified by the numerical structure of the forward solver used and will be discussed

in more detail in the following.

Furthermore, Algorithm 5 implies the possibility of using regularization strategies

to improve the reconstruction performance. In our numerical experiments, we em-

ploy again the so-called diffusion regularization, which, as discussed in Chapter 2,

promotes smooth boundaries.

3.3.1 Recovery of the target relative permittivity value

In this section we introduce an extension of the previous level set-based scheme

in which the relative permittivity value of the targets is assumed constant, equal to

ε̂ ∈ R+, but unknown. Therefore, the goal is to obtain an estimate of this parameter

while retrieving the shape of the objects. We clearly state that the derivation dis-

cussed next follows our previous publication [38].
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Let φ ∈Φ be a given level set function. Then, the corresponding scattering per-

mittivity profile can be expressed as:

εs(x) =Λ(φ; ε̂)(x) =
ε̂−εb(x) if φ(x) ≤ 0,

0 if φ(x) > 0,
(3.83)

where ε̂ ∈ R+ is unknown. Compactly, the previous equation can be rewritten as

follows:

ε(x) = εb(x)+εs(x) = εb(x)H(φ(x))+ ε̂(1−H(φ(x))), (3.84)

where H(·) denotes the Heaviside step function. Then, extending definition (3.69)

as:

T j k : Φ×R+ → Z j , T j k := R j k (Λ(φ; ε̂)), (3.85)

we introduce a new cost functional as follows:

Ĵ j k (φ; ε̂) := 1

2
〈T j k (φ; ε̂),T j k (φ; ε̂)〉Z j . (3.86)

As usual, the reconstruction proceeds by updating the unknown parameters along

descent directions for the cost (3.86). An explicit computation of these directions is

realized below.

We begin by considering an extension of Equation (3.78) through the definition

of a linearized residual operator with respect to φ and a linearized residual operator

with respect to ε̂. This is realized by considering small variations δφ, δε̂ such that

φ→φ+δφ and ε̂→ ε̂+δε̂. Hence, a perturbed residual operator can be introduced

as T j k (φ; ε̂) → T j k (φ; ε̂)+δζ, where

δζ= T ′
φ, j k (φ; ε̂)δφ+T ′

ε̂, j k (φ; ε̂)δε̂= R ′
j k (Λ(φ; ε̂))Λ′

φ(φ; ε̂)δφ+

R ′
j k (Λ(φ; ε̂))Λ′

ε̂(φ; ε̂)δε̂. (3.87)

We specify that, in the adopted notation, the subscripted variables indicate with

respect to which parameters the corresponding operator has been linearized.

As before, descent directions δφ ∈Φ and δε̂ ∈R+ for the cost (3.86) can be obtained

as follows:

δφ(x) =−(T ′
φ, j k (φ; ε̂)∗T j k (φ; ε̂))(x), (3.88)
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δε̂=−T ′
ε̂, j k (φ; ε̂)∗T j k (φ; ε̂), (3.89)

where:

T ′
φ, j k (φ; ε̂)∗ζ=Λ′

φ(φ; ε̂)∗R ′
j k (Λ(φ; ε̂))∗ζ, (3.90)

T ′
ε̂, j k (φ; ε̂)∗ζ=Λ′

ε̂(φ; ε̂)∗R ′
j k (Λ(φ; ε̂))∗ζ, (3.91)

with adjoint operators R ′
j k (Λ(φ; ε̂))∗ and Λ′

φ(φ; ε̂)∗ defined by (3.37) and (3.81) re-

spectively and ζ ∈ Z j .

Instead, the action of the linearized operator Λ
′∗
ε̂

: F → R+ on a perturbation δε ∈ F

is derived next. For a given ε̂ ∈R+, let us consider the inner product:

〈Λ′
ε̂(φ; ε̂)ε̂ , δε(x)〉F =

∫
Ω

(1−H(φ(x)))ε̂δε(x)dx =

∫
φ(x)≤0

ε̂δε(x)dx = 〈ε̂ ,Λ′
ε̂(φ; ε̂)∗δε(x)〉R+ , (3.92)

where, recalling Equation (3.84), we used: Λ′
ε̂
(φ; ε̂)ε̂= (1−H(φ))ε̂.

Thus, from Equation (3.92), it follows that:

Λ′
ε̂(φ; ε̂)∗δε=

∫
φ(x)≤0

δε(x)dx. (3.93)

Therefore, combining the previous results yields:

T ′
φ, j k (φ; ε̂)∗T j k (φ; ε̂)(x) = ak [ε̂−εb(x)]

|∇φ(x)| Re{u j k (x)z j k (x)}Cρ(Γ)χBρ(Γ)(x), (3.94)

T ′
ε̂, j k (φ; ε̂)∗T j k (φ; ε̂) =−ak

∫
φ(x)≤0

Re{u j k (x)z j k (x)}dx. (3.95)

Eventually, substituting (3.94) and (3.95) into Equations (3.88) and (3.89) provides

the explicit formulas for the updates of the level set function and of the estimated

target relative permittivity value.

This derivation leads to the extended reconstruction scheme outlined in the pseu-

docode of Algorithm 6.
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Algorithm 6 2D Extended Level Set Reconstruction Algorithm

Initialize the level set function φ0

Initialize the target relative permittivity value ε̂0

t = 0

while φ not converged do

for k=1:K do

% loop over all frequencies

t = t +1

Compute the update directions:

δφ(k)
t =−T ′

φ,k

(
φt−1, ε̂t−1

)∗ Tk
(
φt−1, ε̂t−1

)
,

δε̂(k)
t =−T ′

ε̂,k

(
φt−1, ε̂t−1

)∗ Tk
(
φt−1, ε̂t−1

)
(optional) Apply a regularization to δφ(k)

t

Update the level set function: φt =φt−1 +ηtδφ
(k)
t ,

where ηt > 0 is chosen according to the line search Algorithm 7

Update the relative permittivity value: ε̂t = ε̂t−1 +αtδε̂
(k)
t ,

where αt > 0 is a small line search amplitude

end for

end while

Compute the permittivity profile corresponding to the final estimations φ, ε̂

3.4 Numerical aspects of the 2D reconstruction algo-

rithms

In this section additional information on the numerical implementation of the pre-

vious reconstruction schemes is provided.

Let us start with the Helmholtz solver. As anticipated, the application of a Finite

Differences Frequency Domain approximation to Equation (3.1) leads to a linear

system whose solution is realized using an indirect numerical method, namely the

BiCGSTAB algorithm [136].

In order to reduce finite-volume effects such as wave reflection phenomena at the



3.4. NUMERICAL ASPECTS OF THE 2D RECONSTRUCTION ALGORITHMS 95

boundaries of the domain, a sequence of Uni-axis Perfectly Matched Layers is adopted

analogously to what described in 3D.

In Appendix 9.6, the reliability of this solver is assessed against the analytical solu-

tions available in free space for magnetic dipole point sources, the computation of

which is provided in Appendix 9.5.

Any reconstruction process requires true data measurements. In our study, this

data is given by through-the-wall measures collected by receivers placed around a

building of interest. Ideally, this measurement operation should be realized exper-

imentally. However, we unfortunately have no experimental data. Therefore, we

circumvent this limitation by synthetically generating it using the Helmholtz solver

again. However, in order to reduce the inverse-crime, we create these measure-

ments by considering a fine discretization of the domain through the definition of a

grid having 1cm×1cm sized pixels. Furthermore, an additional 5% Gaussian noise

component is added to this data.

Similarly to what discussed for 3D applications, the reconstruction of the un-

known parameter profile is here obtained through a Kaczmarz-style algorithm. Only

the information associated with a single frequency is considered to update the per-

mittivity estimation at each iteration. A sweep is defined by repeating the procedure

as many times as there are frequencies in the assumed setup, considering each of

them once.

We specify further that, although in principle a Kaczmarz approach could be applied

even on the sources, this is not done in our study. This choice is motivated by the

structure of the numerical solver employed, which is able to compute the field gen-

erated by each antenna individually but simultaneously. Hence, for numerical effi-

ciency, all sources are accounted for at each iteration of the reconstruction scheme.

In other words, in the following experiments, the action of the linearized residual

operator is evaluated simultaneously for all sources but for a single frequency in

each step. As discussed in [38], this implies the definition of stacked residual oper-

ators Rk (ε) = (R1k (ε), ...,Rpk (ε))T and Tk (φ) = (T1k (φ), ...,Tpk (φ))T that are then used

to introduce the following cost functionals:

Jk (ε) = 1

2
〈Rk (ε),Rk (ε)〉Z , (3.96)
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Ĵk (φ; ε̂) = 1

2

〈
Tk (φ; ε̂),Tk (φ; ε̂)

〉
Z . (3.97)

Thus, descent directions for these costs are computed to update the estimations of

the unknown parameters. However, due to the Kaczmarz nature of the algorithms

involved, each descent direction refers only to a single frequency and might not be

a descent direction for the total cost (i.e. the residual norm accounting for all avail-

able frequencies). This implies that temporary increases in the value of the total

cost might occur as the algorithms proceed, although decreasing trends are overall

expected.

More details on the selection mechanisms of the line search parameters control-

ling the magnitude of the updates are given next. Similarly to the 3D case, standard

gradient-based line search criteria such as Wolfe or Armijo conditions, although

possible in principle, are not chosen since the full gradient of the cost is not eas-

ily available in a Kaczmarz scheme. Moreover, these methods would require addi-

tional executions of the forward solver thus increasing the computational complex-

ity. Hence, favouring fast and inexpensive approaches, we adopt the backtracking

line search procedure specified by Algorithm 7. Inspired by [121], the main idea is

to control the speed of the shape evolution by enforcing that, at each iteration, the

number of pixels that change their permittivity value is always included in a given

interval Ivox = [N mi n
vox , N max

vox ].

The above procedure, however, refers only to level set-based reconstructions. When

considering pixel-based adjoint schemes instead, the selection of the line search

amplitudes is made so that small updates are provided and smooth evolutions are

ultimately achieved. In other words, these amplitudes are chosen so that they are

sufficiently large to ensure that satisfactory progress is made at every iteration but

small enough to avoid overshooting. Additionally, to favour numerical stability, they

are progressively reduced at consecutive sweeps as the algorithm proceeds.
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Algorithm 7 2D Line Search Algorithm

Let φt and δφt+1 be the level set function at iteration t and the new update direc-

tion

Compute the permittivity profile εt associated with φt

Initialize the line search parameter ηt = η0, with η0 > 0

Define the parameters α1, α2 such that 0 <α1 < 1 and α2 > 1

Define the interval Ivox = [N mi n
vox , N max

vox ]

while (Nvox ∉ Ivox) do

φ̃=φt +ηtδφt+1 % trial level set function

Compute the corresponding permittivity profile ε̃

Count the number Nvox of pixels where (ε̃−εt ) 6= 0

if (Nvox < N mi n
vox ) then

ηt =α2ηt

end if

if (Nvox > N max
vox ) then

ηt =α1ηt

end if

end while

return ηt

Some numerical approximations are also realized during the computation of the

updates to improve the stability of the reconstruction [38]. Notice that, although

these simplifications favour smooth evolutions, they preserve the descent property

of the updates. In more detail, we replace the factor |∇φ(x)| with 1 because the nu-

merical computation of derivatives is potentially unstable. Moreover, since different

level set representations can be used to characterize the same shape, we rescale the

magnitude of the level set function obtained after each iteration to promote stabil-

ity.

Finally, we conclude the section by specifying that all the simulations discussed in

this chapter are run on a workstation equipped with an Intel Xeon 3.40GHz CPU.
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3.5 2D numerical results: AFM reconstructions

In this section a few selected numerical experiments are discussed to assess the per-

formance of the AFM.

We start by briefly describing the 2D setup adopted. We model a domain of size

8m×4m by considering a grid including 400×200 pixels, each with physical dimen-

sion of 2cm×2cm. A building of size 7m×3m is schematized by specifying its walls.

Each wall has a thickness of 10cm and a relative permittivity equal to εw all = 2.0.

Two distinct rooms are defined by the presence of an internal wall with a small open-

ing.

Around this building an array of antennas is located. These antennas act as sources

and receivers of electromagnetic radiation and operate at the following frequency

values: f = {50,75,100,125,150,175,200,225,250,275,300}MHz (corresponding to

wavelengths in the range [1,6]m in free space). Overall, a total of 178 sources and

174 receivers arranged equidistantly around the building are considered.

As for the other background parameters, we adopt: ε0 = 1.0 (air permittivity value),

µ = µ0 = 4π× 10−7H/m, and ε0 = 8.854× 10−12F/m. The conductivity is assumed

constant everywhere and equal to σ = 0.01S/m. For simplicity, any frequency de-

pendence of the electromagnetic parameters is neglected.

A target of interest is included in each room of the modelled building. These objects

have a relative permittivity value equal to εt g = 8.0 but different geometries as illus-

trated in Figure 3.1.

The first experiment considered attempts to retrieve the scattering permittivity

profile using the AFM starting from an initial guess equal to the empty building.

The simulation evolves according to Algorithm 4 and the results obtained are sum-

marised in Figure 3.1.
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Figure 3.1: AFM reconstruction of the permittivity profile. The true
setup considered and the initial guess assumed are shown in the top
row. The estimations achieved after 1, 5, 10, 20, 80 iterations are dis-
played next. The corresponding total residual norm trend against the
sweep number is shown at the bottom.
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A visual analysis of Figure 3.1 shows that this technique is able to identify the cor-

rect subregions of the domain where the targets are located. In particular, a rough

estimation of these positions is rapidly available after a few iterations despite some

artefacts appear near the building walls. However, a minute characterisation of the

target shapes is problematic, and the final permittivity value estimated for the ob-

jects of interest is distant from the true one.

The evolution of the simulation is monitored by analysing the total cost trend against

the sweep number. Although there are some temporary increases due to the line

search procedure employed, this trend is overall decreasing. In particular, there is

a general reduction of the cost value in the first 50 sweeps while, subsequently, it

tends to stabilise around a plateau until the simulation is stopped after 80 iterations.

The same experiment is repeated next adding into account the sparsity regu-

larization. In other words, the permittivity profile is updated according to Equation

(3.63). This additional regularization requires to specify the threshold value λ. Here,

we define it as a fraction of the maximum update amplitude given after the appli-

cation of the gradient projection regularization. Mathematically, recalling Equation

(3.58), this yields: λ= θλmaxx∈ΩPc (εs(x)+δεs(x)), where the projection operator Pc

is defined according to (3.57) and θλ = 0.15.

The results achieved are displayed in Figure 3.2.
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Figure 3.2: Sparsity AFM reconstruction of the permittivity profile. The
true setup considered and the initial guess assumed are shown in the
top row. The estimations achieved after 1, 5, 10, 20, 80 iterations are
displayed next. The corresponding total residual norm trend against the
sweep number is shown at the bottom.
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Figure 3.2 confirms that incorporating the sparsity regularization produces com-

pactly supported areas where the permittivity value is higher than the background

one. Also, fewer artefacts are generated at the beginning of the reconstruction, help-

ing to obtain a smooth decreasing cost trend.

The selection of the threshold value might affect the outcome of the reconstruc-

tion significantly. High values of λ produce more compact regions of interest and

fewer artefacts but might also lead to the exclusion of some targets in the retrieved

profile. Conversely, low values of λ might introduce very little regularization effect,

increasing the computational complexity of the process nevertheless. A trade-off is

necessary. To investigate this aspect in more detail, we repeat the previous sparsity

reconstruction but for different threshold values. The obtained permittivity profiles

and cost trends are illustrated in Figure 3.3.
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Figure 3.3: From top to bottom: sparsity AFM reconstructions realized
with threshold values corresponding to θλ = {0.05,0.15,0.25,0.35}. The
permittivity profile achieved after 80 sweeps and the corresponding total
cost trend are shown in each case.
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An analysis of Figure 3.3 shows that, although the cost curves obtained are sim-

ilar both in trends and in the final values reached, different choices of λ lead to

significantly diverse permittivity profiles. When the threshold is too large, only one

object is identified while the one furthest from the antennas is missed. As expected,

reducing this parameter amplitude yields estimations closer and closer to that ob-

tained in the absence of sparsity regularization.

We conclude the section with the following observations. The AFM techniques

investigated before are able to quickly identify candidate targets of interest, even if

only a few iterations are performed. However, at the same time, they are not able

to provide a minute estimation of the target features. This renders these algorithms

perfectly suitable for initializing more sophisticated reconstruction schemes, where

reasonable starting guesses are often required. As already mentioned in the previ-

ous chapter, this idea has been largely investigated in the literature. For example,

we refer the interested reader to [102], [137] and [138] for further information.

3.6 2D numerical results: level set reconstructions

In this section the results achieved by performing selected numerical experiments

aimed at characterizing targets of interest using a level set reconstruction scheme

are discussed. We clearly mention that these results have been already included in

our previous publication [38].

We begin by briefly describing the 2D setup adopted, which closely resembles

the one chosen before for the AFM simulations. The same building with dimension

7m×3m is modelled and surrounded by a set of antennas located around its outer

walls. These antennas operate in the frequency range [100,500]MHz, namely at the

following randomly generated frequency values:

f = {218,160,265,333,102,435,248,334,313,360,344,180,410,247,389,488,

450,460,193,439}MHz. The order of appearance in this set is the same one adopted

during the Kaczmarz-style reconstruction employed. According to [75], considering

a large number of frequency values should produce a better conditioned problem.

Three distinct targets are included within this building as shown in Figure 3.4.
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Figure 3.4: Left: schematic view of the computational setup adopted;
Right: corresponding true permittivity profile.

We briefly recall that the objective is to retrieve simultaneously the scattering

permittivity profile and an estimate of the target relative permittivity value starting

from the available through-the-wall measurements. Thus, employing Algorithm 6

yields the results summarised in Figures 3.5 and 3.6.
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Figure 3.5: Evolution of the level set reconstruction. The permittivity
initial guess chosen is displayed in the top left corner. The permittivity
profiles attained after 2, 3, 4, 10 and 50 sweeps are shown next.
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Figure 3.6: Level set function evolution during the reconstruction. The
initial guess chosen is displayed in the top left corner. The function pro-
files attained after 2, 3, 4, 10 and 50 sweeps are shown next.

According to Figure 3.5, an accurate characterization of the target shapes is ob-

tained. In the beginning, the evolution of the level set function rapidly eliminates

the artefact incorrectly included in the initial guess adopted. Afterwards, the shape

of a remaining object is progressively stretched until it splits into two parts. This

allows the local recovery of two distinct targets individually. Although a diffusion

regularization is adopted, some of the final boundaries retrieved appear irregular

despite being quite smooth in the true profile. The associated evolution of the level

set function is reported in Figure 3.6 for completeness.
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Figure 3.7 illustrates the total cost trend against the sweep number and the evo-

lution of the estimated target relative permittivity value.
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Figure 3.7: Left: total cost trend against the sweep number; Right: evolu-
tion of the estimated target relative permittivity value against the sweep
number.

According to Figure 3.7, the total cost reduces rapidly in the first three sweeps

of the simulation. This fall is most likely due to the removal of the incorrect object

included in the initial guess. Then, it continues to decrease, albeit at a slower rate,

until it stabilises at a plateau value. The simulation is stopped after 50 sweeps when

no significant modifications of the shapes occur in consecutive iterations.

The analysis of the trend of the estimated target relative permittivity value shows

that, in the beginning, the algorithm leads to an increase of this parameter. This is

expected since the initial guess chosen, namely ε̂0 = 7.0, is an underestimation of

the true value ε̂t g = 8.0. Eventually, the trend levels off around the value 8.4 thus

providing a slight overestimation.

3.7 Recovery of the target permittivity with a sampling

method

In the previous section we employed a joint gradient-based reconstruction strategy

to retrieve the geometry of the targets and their electromagnetic properties simulta-

neously. However, as suggested in [109], joint reconstructions of multiple unknown
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parameters correspond to optimization problems that often suffer from the exis-

tence of many local minima and slow convergence.

Therefore, to circumvent the previous complications and inspired by [109], we in-

vestigate an alternative hybrid approach in which the unknown shape is retrieved

using a standard level set technique while a sampling method is considered for the

estimation of the target relative permittivity value.

In more detail, starting from an initial guess ε̂0, we perform a standard level set

shape reconstruction in which the target relative permittivity is kept fixed and equal

to ε̂0. A suitable number Nε̂0 of sweeps are realized in order to obtain a reasonable

approximation of the true target geometry. Notice that ε̂0 is only a prediction of

the expected permittivity value and might not coincide with the true one. Thus, a

more precise characterization of these objects is sought as follows. Starting from the

previous profile outcome, we perform further Nε̂ sweeps by assuming a target rela-

tive permittivity value equal to ε̂0 +δε̂, where δε̂ is a small perturbation. Since this

parameter change is slight, we expect that the system is able to reach a new configu-

ration that (ideally) minimizes the cost functional in a limited number of iterations.

The final value of the cost corresponding to ε̂0 +δε̂ is memorized. Assuming the fi-

nal shape attained as the new initial guess and lightly modifying the target relative

permittivity value again, the procedure can be repeated recursively. This allows to

explore an interval [ε̂mi n , ε̂max] of permittivity values of interest. Once this range

has been examined, the configuration associated with the minimum cost overall

obtained is assumed as the final estimation of the target profile.

The performance of this hybrid approach is assessed numerically as described

next. Considering again the setup assumed in the previous section, we firstly real-

ize Nε̂0 = 75 sweeps using ε̂0 = 7.0, which is an underestimation of the true value

ε̂t g = 8.0. Then, we progressively modify the estimation of the target relative per-

mittivity by adopting δε̂= 0.25 according to the procedure outlined above. Also, we

choose: Nε̂ = 15, ε̂mi n = 5, and ε̂max = 9.
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Figure 3.8: Shape reconstruction using a sampling method for the target
relative permittivity value. The true profile adopted and the initial guess
considered are shown in the top row. The outcome after Nε̂0 = 75 sweeps
with ε̂0 = 7.0 and the final shape corresponding to ε̂ = 7.75 are shown
next.
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Figure 3.9: Cost amplitudes obtained for different target relative permit-
tivity values.
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A visual analysis of Figure 3.8 shows that, during the first part of the reconstruc-

tion, the algorithm is able to eliminate the artefact originally included in the ini-

tial guess and achieve a reasonable approximation of the true shape. Then, a more

precise estimation of the target geometry is obtained when the relative permittivity

value is progressively changed. In particular, smoother boundaries are attained for

the objects located in the left room of the building.

Figure 3.9 shows that, starting from ε̂0 = 7.0, the cost value tends to decrease sig-

nificantly only when we approach the true permittivity ε̂t g = 8.0. Furthermore, as

this cost increases markedly towards the extremes of the considered interval, trying

ε̂ values outside this range is not expected to reduce the mismatch. The overall min-

imum cost is obtained at ε̂= 7.75, which is therefore taken as the final estimation of

the target relative permittivity. Note that this provides a slight underestimation of

the true value. Similarly, the corresponding profile is chosen as the ultimate approx-

imation of the shape that is sought.

3.8 Summary of the chapter

In this chapter, we introduced reconstruction techniques aimed at characterizing

objects of interest hidden behind walls starting from through-the-wall measure-

ments in 2D setups. Following the analysis discussed in Chapter 2, we introduced an

efficient numerical forward model based on the Helmholtz equation aimed at over-

coming some of the complications associated with the high computational costs of

the 3D Maxwell’s solver. Thus, this 2D proof-of-concept model was employed to

investigate the possibility of generalizing the formulation of the underlying inverse

scattering problem by simultaneously retrieving multiple unknown parameters. In

particular, inspired by previous studies on breast cancer detection, we assessed in-

novative gradient-based joint reconstructions and sampling methods aimed at es-

timating both the geometry and electromagnetic properties of the unknown targets.

Eventually, we discussed some representative numerical experiments to clearly high-

light the advantages and the limitations of the considered algorithms and made per-

formance comparisons.



Chapter 4

2D TWRI object reconstructions using

stochastic optimization methods

In this chapter we present a comparison of stochastic optimization algorithms aimed

at reconstructing the electromagnetic profiles of targets of interest hidden behind

walls. We refer again to surveillance applications where the objective is to retrieve

information on objects included inside a building starting from through-the-wall

measurements. A parametrized level set shape representation of the unknown tar-

gets is here adopted to reduce the dimensionality of the problem. This parametriza-

tion is expressed in terms of a combination of Radial Basis Functions (RBFs), and

different classes of RBFs are investigated and compared [139]. We clearly state that

the content of this chapter follows closely our publication [140].

The accuracy level required for through-the-wall imaging tasks depends on the

application considered. High resolution allows minute characterizations of the tar-

gets but often requires the availability of several broad-band antennas and relatively

long measurement processes. Conversely, a fast estimation of the target features can

be obtained with a simpler measurement approach, which however might lead to a

lower resolution. A trade-off is generally necessary.

Suppose moving targets are included in the domain. In that case, the necessity of

following their motion might introduce constraints in the amount of time available

at a given point to retrieve their locations before having to move to the set of mea-

surements collected at a consecutive time. Hence, in these applications, adopting a

parametric approach to infer the object positions quickly seems appropriate.

112
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The need for rapid estimations requires reducing the complexity of the prob-

lem. The approach adopted here is to represent the imaging domain by a small set

of expansion parameters using a specific model. In more detail, a parametric level

set description is employed to characterize the targets in terms of a limited number

of unknown expansion coefficients. Therefore, the shape of these targets is charac-

terized in terms of a smooth level set function defined as a linear combination of a

few suitably chosen Radial Basis Functions (RBFs). This allows to rewrite the esti-

mation of the electromagnetic parameter profiles in terms of the determination of a

few expansion coefficients, significantly reducing the complexity of the task consid-

ered compared to the approach discussed in the previous chapter. This also comes

with an important reduction of the dimensionality of the problem, thus enabling

the adoption of specialized stochastic optimization schemes, including non-linear

techniques, that would be otherwise impossible in a standard pixel-based descrip-

tion of the domain due to the high number of unknown parameters.

A comparison of several stochastic optimization schemes from the particular

viewpoint of stochastic data selection in inverse scattering is described in this chap-

ter. The stochastic nature of these approaches plays a fundamental role since, in

many applications, the amount of data collected is large. Therefore, standard de-

terministic (batch) techniques might be heavily limited by the associated compu-

tational requirements. Moreover, in an inverse scattering framework, the need of

approximating the propagation of the fields through the adoption of an often ex-

pensive forward model exacerbates this issue even further. Stochastic approaches

can be successfully employed to circumvent the previous limitations and achieve

valuable reconstructions.

Similar stochastic optimization techniques have been investigated recently in the

framework of machine learning [141], [142]. In fact, training a neural network leads

to a minimization task that benefits from fast and reliable algorithms, especially in

large scale problems.

An outline of this chapter is provided as follows. Firstly, we introduce the under-

lying inverse scattering problem and formulate it in terms of an optimization task.

Then, the parametric level set representation adopted to characterize the targets

of interest is introduced, and the shape evolution problem is rewritten in terms of

the evolution of a parametric coefficient vector that specifies the level set function
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associated with the system. To the best of the author’s knowledge, this is the first

application of a parametric domain representation in through-the-wall reconstruc-

tions. Hence, different optimization schemes are introduced along with a tailor-

made line search procedure developed explicitly for level set shape reconstructions.

Some first and second-order optimizers are considered, namely the Stochastic Gra-

dient Descent (SGD) method, the Adam algorithm and a quasi-Newton online BFGS

method. These algorithms are implemented in Matlab from the start by the author

and, although this is realized in a way close to their standard form described in the

literature, some modifications are included to specify them to our problem of in-

terest. The performance of these optimizers is compared by realizing numerical

experiments. Eventually, a discussion of a possible extension aimed at improving

the shape accuracy of a specific RBF class concludes the chapter.

4.1 The underlying inverse scattering problem

In this section we formulate the reconstruction of the object electromagnetic pro-

files in terms of the solution of an inverse scattering problem. Similarly to what was

discussed in Chapter 3, we refer again to the 2D Helmholtz model to approximate

the propagation of the fields numerically. Despite in principle an analogous study

can be realized by assuming alternative wave propagation solvers, for example in

3D, our choice is motivated by the attempt to reduce the computational require-

ments of the simulations. In addition, we believe that this proof-of-concept study is

sufficient to understand how similar methods might perform in a more realistic 3D

situation.

Static and dynamic objects can possibly be included within the building. These

objects are characterized by a level set description that, although in principle can

be done with a single level set function, is here realized by distinguishing station-

ary and dynamic contributions. Practically, this implies the adoption of two dis-

tinct level set functions. This choice is particularly convenient when the recon-

struction of the background environment can be achieved as a preprocessing oper-

ation realized on data collected in the absence of moving objects, perhaps measured

overnight when the monitored building is thought to be empty. A similar hypothesis

is considered in [38] and [42].
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In this analysis, we focus on the dynamic tracking aspects or, more precisely, in

quickly retrieving target information assuming as a constraint a limited available

processing time. In other words, the dynamic aspect is only considered as a con-

straint in the available processing time before considering the set of measurements

collected at the following time steps.

We retrieve the target positions in consecutive time steps individually and indepen-

dently. Hence, no specific time correlations are accounted for as it could be instead

realized, for example, by considering a Kalman filter. For completeness, we mention

that a tracking analysis based on Bayesian statistical inference and Kalman filters

has been investigated in our previous publication [40].

The characterization of the objects of interest requires the solution of a shape

reconstruction problem that can be rewritten as a minimization task by defining

a cost functional as outlined below. Recalling the notation introduced in Chapter

3, let us assume the presence of p sources q j , j = 1, ..., p, each associated with m j

receivers located around the monitored building at positions x j n , n = 1, ...,m j . Ad-

ditionally, recalling definitions (3.17), (3.19), (3.21), (3.64), let G̃ j k ∈ Z j be the (true)

measurement data collected for a given source q j at frequency fk , with k = 1, ...,K .

Then, the recovery of the targets can be written in terms of the determination of a

permittivity profile ε̃ ∈ F that satisfies the data, with

F :=
{
ε : Ω→R,

∫
Ω
|ε(x)|2dx <∞

}
(4.1)

andΩ=R2.

As mentioned before, the operation of measuring the field values at the receivers

can be expressed by introducing a measurement operator such that:

M j : U → Z j , M j u j k = (u j k (x j 1), ...,u j k (x j m j ))T , (4.2)

where u j k ∈U solves the Helmholtz equation:

[∇2 +akε+ i bkσ]u j k = q j . (4.3)
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Therefore, we express the discrepancy between true data and estimations associ-

ated with a considered permittivity profile through the residual operator:

R j k : F → Z j , R j k (ε) = Mu j k (ε)−G̃ j k . (4.4)

Similarly to Chapter 3, all residual functions R j k (ε) are conveniently combined in

a single vector quantity R(ε) = (R11(ε), ...,RpK (ε))T that is then used to introduce a

well-designed cost functional. The minimization of this cost drives the shape recon-

struction process. This is realized by considering a parametric framework in which

the previous operators are expressed in terms of a coefficient vector introduced to

specify uniquely the level set function associated with the system. More details are

provided in the following section.

4.1.1 Parametric level set description

A parametric level set representation is adopted throughout this study to reduce the

dimensionality of the problem.

According to [102] and [91], standard pixel-based level set methods are able to pro-

vide accurate and flexible shape representations, but they also suffer from some

limitations. Among them, we mention that they are generally computationally ex-

pensive and, as a consequence, usually only first-order optimization algorithms can

be applied, resulting in long evolution processes. Additionally, a minute level set

description of a given shape requires a fine grid (i.e. a large number of pixels) that

might imply high memory requirements [143].

The adoption of a parametric approach is here realized to overcome the previous

limitations. Although it might result in a less detailed shape representation due to

the smaller number of free parameters available, it reduces the computational com-

plexity of the problem, allowing higher than linear-order optimization strategies.

Moreover, the choice of a suitable parametrization might introduce an inherent reg-

ularization effect without the explicit addition of penalty terms in the definition of

the cost functional. In more detail, each object is characterized by a smooth level set

function φ that, instead of being defined directly on a pixel grid, is conveniently ex-

pressed in terms of a smaller set of suitably chosen basis functions (the latter ones

defined on the pixel grid). Inspired by [144], a parametric level set approach for

through-the-wall shape reconstruction problems is introduced next.
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Let D ⊂Ω be a closed domain with corresponding boundary ∂D . Furthermore,

let µ = (µ1, ...,µm)T ∈ Rm be a coefficient vector. Then, a level set representation of

D can be obtained by considering a smooth level set function φ(x;µ) ∈Φ, such that:
φ(x;µ) > c, x ∈ D,

φ(x;µ) = c, x ∈ ∂D,

φ(x;µ) < c, x ∈Ω\ D.

(4.5)

In other words, the shape of the domain considered is characterized as the level set

defined by the equation: φ(x;µ) = c, where c ∈ R is a scalar value suitably chosen.

Our choice is c = 0.

The vectorµ ∈Rm includes the expansion coefficients with respect to the chosen set

of basis functions. Hence, any admissible shape D has to be represented by a spe-

cific choice of expansion coefficients through a suitably defined level set function.

Also, the shape evolution reduces to the evolution of this expansion vector µ. Thus,

when a discrete artificial time is considered, the shape evolution can be seen as a

discrete optimization approach for µ [91]. This optimization problem can be for-

mulated by specifying the residual operator (4.4) in terms of the coefficient vector

and, consequently, by defining a cost functional whose minimization is the objec-

tive of the task.

In our parametric formulation, we adopt the notation:

ε(x;µ) = εi (x)H(φ(x;µ)− c)+εo(x)(1−H(φ(x;µ)− c)), (4.6)

where µ is the expansion coefficient vector introduced before. Here, H(·) denotes

the Heaviside step function, φ is the level set function representing the shape D of

interest while εi (x) and εo(x) are the a-priori known profiles of the permittivity in-

side and outside D respectively. Note that these profiles εi (x), εo(x) are not included

in the underlying inverse problem being known a priori. Furthermore, regardless of

their smoothness, the presence of the Heaviside function renders Equation (4.6) not

differentiable in the classical sense along ∂D . This reflects the possible discontinu-

ity of ε across that boundary. However, following [144] and [91], by extending this

computation to the framework of mathematical distribution theory, a formal differ-

entiation of (4.6) can be computed.
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We anticipate here that, although εo(x) and εi (x) can in principle be quite complex,

we assume them to be constant distributions modelling the relative permittivity

value of the targets and of the background respectively.

The reconstruction is driven by the attempt to reduce and ideally minimize a

cost functional expressed in terms of the expansion coefficients µ ∈Rm . This cost is

here defined as follows:

J (µ) : Rm →R, J (µ) = 1

2

〈
R(µ),R(µ)

〉
Z . (4.7)

According to classical optimization theory, and abusing slightly the notation by us-

ing the same symbol R in two different function spaces, the cost (4.7) is written in

terms of a residual operator R(µ) = R(ε(x;µ)) that, similarly to (4.4), provides infor-

mation on the discrepancy between our current estimation and the true profile of

the permittivity.

The minimization task we address requires the computation of the variation of

the cost (4.7) with respect to µ (or its components µ j ). This is formally given by the

application of the chain rule as shown below:

∂J

∂µ j
= ∂J

∂ε

∂ε

∂µ j
. (4.8)

In the following, each factor appearing on the right side of Equation (4.8) is further

investigated.

Let us start with the computation of the formal derivative of the cost with respect

to the parameter ε. Firstly, we express the residual operator R(ε) in terms of the

unknown property ε ∈ F and, for simplicity of notation, we neglect its dependence

on µ in the following. Then, denoting as δε ∈ F a small variation of the profile ε, we

compute R(ε+δε). Furthermore, following [102], [89] and [145], we indicate as R ′(ε)

the linearized residual operator of R(ε), assuming that it exists, is well defined and

satisfies the generalized Taylor expansion:

R(ε+δε) = R(ε)+R ′(ε)δε+O(||δε||2F ). (4.9)

Recalling that the cost functional with respect to ε can be expressed as J (ε) = 1
2〈R(ε),R(ε)〉Z ,
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where the inner product is computed on the space of measurements, calculating

J (ε+δε) starting from Equation (4.9) yields:

J (ε+δε) = 1

2
〈R(ε+δε),R(ε+δε)〉Z =

1

2
〈R(ε),R(ε)〉Z + 1

2
〈R(ε),R ′(ε)δε〉Z + 1

2
〈R ′(ε)δε,R(ε)〉Z +O(||δε||2F ) =

J (ε)+Re{〈R ′(ε)δε,R(ε)〉Z }+O(||δε||2F ) =

J (ε)+Re{〈R ′(ε)∗R(ε),δε〉F }+O(||δε||2F ), (4.10)

where the symbol Re{·} indicates to take the real part of the quantity considered

and R ′(ε)∗ denotes the adjoint of the linearized operator R ′(ε). Notice that the term

Re{R ′(ε)∗R(ε)} can be interpreted as the gradient of the cost with respect to the per-

mittivity profile.

Let us focus now on the second factor in (4.8). Since ∂ε
∂µ j

= ∂ε
∂φ

∂φ
∂µ j

, where ∂ε
∂φ

=
(εi −εo)δ(φ− c) from (4.6), we can formally express Equation (4.8) as follows:

∂J

∂µ j
= Re

{
〈R ′(ε)∗R(ε), (εi −εo)δ(φ− c)

∂φ

∂µ j
〉F

}
, (4.11)

where δ(·) denotes the Dirac delta distribution. Notice that the presence of the term
∂φ
∂µ j

in Equation (4.11) introduces a dependence on the specific choice of radial basis

function class selected.

Eventually, by combing the previous results, the gradient of the cost functional

with respect to the coefficient vector µ can be derived. Notice that finalizing this

computation requires to specify the class of basis functions used in the parametric

representation of the level set function. This selection should be carefully realized

since it might introduce a positive regularization effect as the algorithm proceeds,

yielding an overall smooth and stable evolution. Also, different classes might have

different accuracies in approximating shapes with different curvatures, affecting

therefore the capability of the technique to retrieve details with a specific geome-

try [144], [146].
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In this study, we consider and compare the following classes of Radial Basis Func-

tions (RBFs) [139]:

(i ) Gaussian functions (GA) ψ(r ) = e−(θr )2
;

(i i ) Wendland’s functions (WL) ψ(r ) =
(
1− r

δ

)4

+

(
4

r

δ
+1

)
. (4.12)

Here, r = ||x−χ0||2 is the Euclidean distance between a generic point x of the do-

main and the centre χ0 of the considered RBF. Furthermore, the shape of ψ(r ) is

further specified by the free parameters: θ,δ ∈ R+. For brevity, we have introduced

the notation: (
1− r

δ

)4

+
=

(1− r
δ )4 if 0 ≤ r

δ < 1,

0 otherwise.
(4.13)

Notice that the main distinguishing feature between the above two classes is that

while Gaussian RBFs are not null throughout the domain of interest, (Compactly

Supported) Wendland’s functions only have non-zero contributions inside a disc of

radius δ around their centres [144].

Once a class of basis function is chosen, the level set function associated with the

unknown targets can be explicitly defined. According to [144], a common strategy

to achieve high flexibility is to expressφ as a linear combination of RBFs of the type:

φ(x;µ,χ) =
m∑

j=1
µ jψ(||x−χ j ||2), (4.14)

whereµ ∈Rm is the coefficient vector andχ j ∈Ω denotes the centre of the j -th RBF.

Although in principle even the centre locations can be considered as free param-

eters and part of the optimization problem, this is not realized here. Instead, we

assume that they are known and never changing throughout the reconstruction.

By specifying the level set function according to Equation (4.14), the computa-

tion of the gradient of the cost with respect to the coefficient vector can be com-

pleted. In particular, it follows that:

∂φ

∂µ j
= ψ(||x−χ j ||2), (4.15)

which is the final factor needed for computing (4.11).
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Hence, having calculated the previous gradient, a possible shape reconstruction

approach can be defined in which the estimated profile of the unknown parameter

of interest is progressively updated such that the cost functional is reduced. Recall-

ing the parametric representation of the target profile, an update of its shape corre-

sponds to an evolution of the coefficient vector µ over discrete artificial time. Thus,

adopting a deterministic gradient descent scheme yields the following algorithm:µt =µt−1 −ηt∇µ J (µ)|µ=µt−1
,

µ0 =µ(0),
(4.16)

for t = 1,2, ..., where ηt > 0 is the step size amplitude at iteration t and starting point

µ(0).

As highlighted in our paper [140], the previous update strategy relies on the com-

putation of the gradient ∇µ J (µ) with respect to the entire data set. This operation is

generally computationally demanding, especially when large data sets are available.

Therefore, in the following, a stochastic approach is adopted instead.

As already anticipated, due to the reduction of the dimensionality of the prob-

lem given by the parametric representation employed, faster (than linear-order)

converging schemes can be investigated to minimize the cost functional. For exam-

ple, quasi-Newton or Newton methods can lead to faster converge rates speeding

up the reconstruction but, at the same time, they might imply an increase in com-

putational complexity. A trade-off is often necessary. In the following, a stochastic

quasi-Newton method, namely the so-called online BFGS method, is considered.

In general, the core idea of quasi-Newton schemes is to approximate the true Hes-

sian H(µ) of the cost functional by using information given by zero and first-order

derivatives. A possible approach consists in deriving an analytical approximation of

this Hessian as discussed in [144], but this strategy is not investigated here. Instead,

inspired by the Levenberg-Marquardt method [147], we compute a matrix H̃(µ) that

is then used to determine an update direction∆µt =µt−µt−1 for the coefficient vec-

tor µt−1 by solving a linear system. More precisely, in the oBFGS algorithm chosen,

the matrix H̃(µ) is iteratively derived by adopting a stochastic scheme as discussed

in the next section.
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4.2 Stochastic optimization algorithms

The antennas used to perform through-the-wall measurements are often able to op-

erate at different frequencies. In these multi-frequency setups, the amount of data

collected is often large. Hence, the computation of the full gradient or the full Hes-

sian of the cost functional might result in a prohibitively expensive operation.

In our case, the calculation of the gradient information for a single fixed frequency

is straightforward. However, this operation needs to be repeated as many times

as there are available frequencies, yielding potentially high computational costs.

Therefore, we would like to be able to take advantage of the specific structure of

our data set by designing an algorithm able to provide an update for the coefficient

vector µ after having processed all the information related to one single frequency.

Subsequently, the procedure should be repeated by considering a different subset of

data, namely the information corresponding to a different frequency. The selection

of a particular data subset should be made randomly so that the overall procedure

defines a stochastic algorithm with respect to the frequencies considered.

We highlight however that a similar approach can be realized by diving the full mea-

surement set with respect to different parameters. For example, identifying sub-

sets corresponding to specific antenna locations might be considered. The deci-

sion on how to split the data set into smaller parts is partially driven by the features

of the numerical solver adopted to model the propagation of the electromagnetic

waves within the domain. Our choice of splitting the data with respect to the fre-

quency is practically motivated by the fact that the forward model used, namely the

Helmholtz model, is able to compute the fields associated with each source singu-

larly but simultaneously. Hence, a split based on the location of the antennas would

be counter-productive in this study.

Starting from the through-the-wall measurements collected, the objective is to

localize and characterize objects of interest by recovering the permittivity profile ε

within the domain.

This reconstruction task is driven by the minimization of a cost functional defined

as a sum of contributions corresponding to different data subsets. See Equation

(4.7). Here, stochastic algorithms are employed to approximate the full gradient in-

formation by considering only a subset of data (i.e. information corresponding to

one frequency) at a time following the strategy outlined above. Similar first-order
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stochastic optimization schemes have been applied successfully to different appli-

cations, including machine learning [141], [142]. However, despite being computa-

tionally efficient, the stochastic nature of these algorithms introduces some com-

plications. Among them, we mention the issue of monitoring the progress made as

the algorithm proceeds. In fact, in deterministic approaches, a viable modality to

assess the evolution of the reconstruction is given by the analysis of the total cost

trend against the sweep number. Therefore, to overcome this limitation, we de-

cide to periodically compute the total cost by considering the contributions of all

frequencies. However, since this operation is quite expensive, it is only performed

every Ncost iterations.

Analogously, the definition of stopping criteria when stochastic algorithms are em-

ployed is problematic. In this analysis, we simply monitor the total cost trend as

anticipated before and stop the simulation after a fixed number of sweeps.

In addition, standard line search procedures such as Wolfe or Armijo conditions are

not recommended to use since the full gradient of the cost is not easily available

at every iteration [120]. Hence, to circumvent this drawback, we introduce a tailor-

made line search procedure aimed at achieving smooth shape evolutions without

adding further expensive computational costs. More details are discussed further

below.

A detailed description of the optimization algorithms investigated in this chap-

ter is provided below. We anticipate that their implementation is realized closely

to their standard form described extensively in the available literature. However, a

few specific modifications are included to specify them to our problem of interest,

starting from the line search procedure adopted.

We highlight here that while each of these techniques aims to determine an estimate

of the coefficient vector that satisfies the data, this is not the ultimate objective of

the reconstruction process. In fact, we are interested in the parameter profile rep-

resented by that coefficient vector (i.e. the corresponding level set function). In this

sense, our procedure can be considered a stochastic shape evolution scheme based

on available stochastic optimization approaches. This concept of stochastic shape

evolution by a level set representation is not new and it has been already applied

to optimal engineering design problems [148]. Furthermore, according to [148], it

might help to circumvent certain local minima that might occur in deterministic
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shape optimization approaches or, as in our case, when solving electromagnetic in-

verse problems.

4.2.1 Stochastic Gradient Descent method

A popular first-order stochastic optimization algorithm is the so-called Stochastic

Gradient Descent method (SGD). Its standard derivation is outlined next following

[149] and [150].

We begin by rewriting the cost functional

J (µ) = 1

2

〈
R(µ),R(µ)

〉
Z (4.17)

in an equivalent but convenient form as specified below:

J (µ) =
K∑

k=1
Jk (µ), (4.18)

with

Jk (µ) = 1

2

p∑
j=1

〈
R j k (µ),R j k (µ)

〉
Z j

. (4.19)

Equation (4.18) clearly shows that a batch computation of the gradient ∇J (µ) would

require an expensive loop over all (frequency) data.

SGD improves the numerical efficiency by randomly selecting a subset of data, i.e.

a single frequency, and approximating the full gradient by a version that only takes

into account this particular subset of data. Mathematically, this corresponds to ap-

proximating ∇J (µ) by ∇Jk (µ), where k specifies the single frequency chosen.

By updating the unknown coefficient vector µ along the directions defined by suc-

cessive SGD approximations, according to [149] and [150], it is expected to achieve

an average behaviour that replicates the application of standard (batch) gradient

descent methods when the number of sweeps considered is sufficiently large. In

addition, according to [149], the adoption of a SGD algorithm might be advanta-

geous since redundant information is often included in extensive data sets and, due

to the randomness inherently involved, it might help escape local minima of the

cost promoting the attainment of a global minimum.

Overall, the structure of the algorithm as implemented here is illustrated in the

pseudo-code of Algorithm 8.
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Algorithm 8 SGD Algorithm

Initialize the parameter vector µ0

Initialize the level set function φ0

t = 0

while µ not converged do

t = t +1

Randomly extract a data subset X t−1 from the dataset X

Compute the gradient of the cost wrt X t−1: ∇µ J (µt−1, X t−1)

Update the coefficient vector: µt =µt−1 −ηt∇µ J (µt−1, X t−1),

where ηt > 0 is chosen according to the line search Algorithm 11

end while

Compute the final level set φ and the corresponding permittivity profile ε

4.2.2 Adam optimization method

The Adam algorithm [151] is a generalization of the SGD method that takes into

account low-order moments of the gradients. Its popularity is mainly due to its

memory and computational efficiency, its fast convergence, easy tuning of its pa-

rameters and its applicability to high dimensional problems. Nowadays, the Adam

optimization algorithm is broadly used for training neural networks in deep learn-

ing applications [152], [153]. Its structure is outlined in [151], where a convergence

analysis and an extensive mathematical description of its properties are provided.

Similarly to the SGD algorithm, the Adam method updates the unknown coeffi-

cient vector µ along gradient descent directions for J (µ) computed with respect to

random subsets of training data. However, here the performance is further boosted

by adopting adaptive learning rates starting from estimates of the first and second

gradient moments.

Although the structure of the algorithm implemented here follows [151], in order to

adjust it to our particular application of shape optimization, we equip it with the

line search procedure provided by Algorithm 11. Eventually, this yields the scheme
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outlined in the pseudo-code of Algorithm 9.

Algorithm 9 Adam Algorithm

Initialize the parameter vector µ0

Initialize the level set function φ0

Define the exponential decay rates for the moment estimates: β1,β2 ∈ [0,1)

Initialize the first moment vector m0 = 0

Initialize the second moment vector v 0 = 0

t = 0

while µ not converged do

t = t +1

Randomly extract a data subset X t−1 from the dataset X

Compute the gradient of the cost wrt X t−1: g t =∇µ J (µt−1, X t−1)

Update the first moment vector mt =β1mt−1 + (1−β1)g t

Update the second moment vector v t = β2v t−1 + (1−β2)g 2
t , where g 2

t denotes

the elementwise square of g t

Rescale the first moment vector m̂t = (1−βt
1)−1mt

Rescale the second moment vector v̂ t = (1−βt
2)−1v t

Update the coefficient vector: µt =µt−1 −ηt m̂t /(
√

v̂ t +α), where α> 0

and ηt > 0 is chosen according to the line search Algorithm 11

end while

Compute the final level set φ and the corresponding permittivity profile ε

4.2.3 Online BFGS method

As anticipated, higher than linear order optimization algorithms are also consid-

ered in this analysis. In recent years, there has been a significant increase in interest

in assessing second-order optimization techniques, especially in the field of deep

learning, where they can be used for training neural networks [154], [155]. Among
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these algorithms, we consider a stochastic quasi-Newton scheme, namely the so-

called online BFGS (oBFGS) method.

We mentioned already that the goal of a quasi-Newton method is to approximate

second-order derivative information by combining zero and first-order derivatives.

In a stochastic framework, this is usually realized by considering sequential gradi-

ent updates computed with reference to randomly chosen subsets of data. Notice

that it is essential to ensure that successive gradients used for the approximation of

higher-order derivatives are in fact related to each other.

In the following, a stochastic extension of the popular BFGS method is considered

[156], [157], [158]. However, some tailor-made modifications are included to specify

this method to our through-the-wall shape reconstruction application. An outline

of this optimization scheme as implemented here is shown in the pseudo-code of

Algorithm 10.
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Algorithm 10 oBFGS Algorithm

Initialize the parameter vector µ0

Initialize the level set function φ0

Initialize the parameters: c ∈ (0,1], λ≥ 0, α> 0

Initialize the inverse Hessian approximation of the cost: B 0 =αI

t = 0

while µ not converged do

Randomly extract a data subset X t from the dataset X

p t =−B t∇µ J (µt , X t )

Update the coefficient vector: µt+1 =µt + s t , where s t = ηt p t ,

with ηt > 0 chosen according to the line search Algorithm 11

y t =∇µ J (µt+1, X t )−∇µ J (µt , X t )+λs t

if (t=0) then

B t = sT
t y t

y T
t y t

I

end if

ρt = (sT
t y t )−1

B t+1 = (I −ρt s t y T
t )B t (I −ρt y t sT

t )+ cρt s t sT
t

t = t +1

end while

Compute the final level set φ and the corresponding permittivity profile ε

Algorithm 10 differs from the one presented in [158] by the novel line search

procedure adjusted to our shape optimization task. In [158], no explicit line search

procedure is present since the required convexity of the object function ensures that

the curvature condition sT y ≥ 0 holds. However, in our problem, this convexity is

not guaranteed a priori. Thus, the addition of an explicit line search procedure in

Algorithm 10 is realized to promote smooth evolutions.
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Moreover, some further conditions need to be included regarding the approxi-

mation of second-order derivatives. In fact, successively calculated gradient direc-

tions for randomly chosen data subsets might not provide information regarding the

second-order derivatives of the entire data set or regarding the individual data sub-

sets. For this reason, the oBFGS algorithm requires the calculation of two distinct

gradients per iteration while the deterministic BFGS makes use of two gradients cal-

culated in sequential sweeps. In particular, due to the definition of y t in Algorithm

10, it is essential that these two gradients are calculated with respect to the same

subset of data to preserve stability.

The oBFGS algorithm proposed in [158] has been developed specifically for con-

vex functions. In our application, however, this (global) convexity assumption is not

satisfied in general. Nevertheless, the local approximation of the cost functional suf-

ficiently close to a local minimum can be assumed convex. Therefore, the previous

convexity constraint might be satisfied by initially applying a first-order optimizer,

for example the Adam method, and then switching to oBFGS when the cost value

has been reduced sufficiently. In other words, with a sufficiently low cost value, we

expect that the algorithm has reached the vicinity of a local minimum that justifies

the application of a quasi-Newton scheme.

Finally, we also consider a possible variation of the previous oBFGS algorithm

inspired by the restarting procedure developed for the Conjugate Gradient method

[159], [160], where the core idea is to reinitialize the (inverse) Hessian approxima-

tion by the identity matrix every NReIni sweeps. According to [147], this modifica-

tion might help achieve an accurate local quadratic approximation to the cost func-

tional. A performance comparison between these two oBFGS variants is discussed

in the following.

4.2.4 Line search procedure

The objective is to introduce a line search criterion that provides a controlled speed

of the underlying shape evolution without implying high computational costs. In

stochastic frameworks, standard gradient-based line search criteria such as Wolfe

or Armijo conditions are not recommended to use since the full gradient of the cost

is not easily available [120]. Therefore, we adopt a tailor-made line search strategy



130 CHAPTER 4. STOCHASTIC ALGORITHMS FOR TWRI RECONSTRUCTIONS

explicitly developed for shape reconstruction problems in conjunction with level set

representations inspired by [121] and Algorithm 7.

We employ a backtracking procedure where no additional runs of the forward solver

are required [121], [101], [124]. The speed of evolution is monitored by measuring

the number of pixels that change permittivity value at each time step. However, al-

though highly efficient, this line search does not enforce the reduction of the cost

explicitly. Hence, temporary increases in the cost value might occur as the recon-

struction proceeds.

Exploiting the pixel-based representation of the shapes, we require at each step

that the number of pixels (or voxels in a 3D setup) Nvox that change the value of

their permittivity due to shape updates is always included in a given interval Ivox =
[N mi n

vox , N max
vox ]. A suitable selection of this interval ensures a smooth shape evolution

throughout the reconstruction process.
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Algorithm 11 Parametric Line Search Algorithm

Letµt and∆µt+1 be the coefficient vector at iteration t and the new update direc-

tion

Compute the level set function φt associated with µt

Compute the permittivity profile εt associated with µt

Initialize the line search parameter ηt = η0, with η0 > 0

Define the parameters α1, α2 such that 0 <α1 < 1 and α2 > 1

Define the interval Ivox = [N mi n
vox , N max

vox ]

while (Nvox ∉ Ivox) do

µ̃=µt +ηt∆µt+1 % trial coefficient vector

Compute the corresponding level set function φ̃

Compute the corresponding permittivity profile ε̃

Count the number Nvox of pixels where (ε̃−εt ) 6= 0

if (Nvox < N mi n
vox ) then

ηt =α2ηt

end if

if (Nvox > N max
vox ) then

ηt =α1ηt

end if

end while

return ηt

4.3 Numerical results

In this section we describe the results of the numerical experiments performed to

assess and evaluate the optimization algorithms introduced before. As already men-

tioned, this study follows closely our publication [140].

We begin by specifying the 2D setup adopted. Similarly to Chapter 3, we model a

domain of 8m×4m using a grid of 400×200 pixels. Each pixel has a physical size of
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2cm×2cm. Here, a building with dimension 7m×3m is schematized. This building

consists of two distinct rooms as illustrated in Figure 4.1. Each wall modelled has a

width of 10cm and a relative permittivity equal to εw all = 2.0. A single elliptical tar-

get with relative permittivity value of εt g = 7.0 is included within this building. The

background space is filled with air with a relative permittivity value of ε0 = 1.0. The

conductivity is assumed constant everywhere and equal to σ = 0.01S/m. All back-

ground and wall parameters are assumed known a priori. Thus, only the shape and

location of the target are the objectives of the underlying inverse scattering prob-

lem.

The building is surrounded by a set of antennas, i.e. 178 sources and 174 receivers,

able to operate at the following frequency values: f = {100,150,200,250,300}MHz.
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Figure 4.1: To the left: true setup considered. To the right: initial guess
adopted in the following numerical experiments.

Figure 4.1 also shows the initial guess profile of the relative permittivity adopted

in the following numerical experiments. More precisely, in the parametric represen-

tation assumed, the coefficient vector corresponding to this profile is chosen as the

starting point of the optimization schemes analysed.

Notice that two distinct objects are included in this initial profile, one close to the

true target position and one at an incorrect location, which models a reconstruction

artefact. According to Chapter 3, a similarly looking profile can be inferred from a

few iterations of an adjoint-based reconstruction [127], [101], where, in addition to

the first approximation of the true target, a few ghost objects might appear due to

the non-linear nature of the underlying scattering problem. Also, the presence of

the artefact is important to assess the robustness of the optimization methods as
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the reconstructions proceed.

In recursive tracking applications, an analogous initial profile might be deduced

since there is often a predicted location of the target in addition to some other pos-

sible positions that might be considered.

A comparison of the performance of the optimization algorithms introduced be-

fore is presented next. This analysis is practically realized by implementing these

algorithms in Matlab and then performing numerical experiments on a workstation

equipped with an Intel Xeon 3.40GHz CPU.

Each simulation is performed for a fixed number of iterations equal to Nsweep = 200.

Additionally, the following values are selected: Ncost = 10, NReIni = 10, Ivox = [5,16].

Two different classes of RBFs are considered and compared. The performance of

the optimization schemes is evaluated in terms of the accuracy of the final shapes

retrieved and how fast a reasonable approximation is obtained in terms of the it-

eration count. The geometrical preciseness of the reconstructions is assessed by

visually comparing the final shapes retrieved against the true permittivity profile.

Additionally, the global evolution of each process is evaluated by monitoring the

associated trend of the total cost functional computed every Ncost iterations as al-

ready anticipated.

Eventually, the numerical stability of the algorithms analysed with respect to details

of the line search procedure adopted is tested by modifying the extreme points of

the interval Ivox .

Figure 4.2 shows the speed of convergence of the optimization schemes here

considered in terms of the evolution of the associated cost trends against the itera-

tion count. Notice that, in this analysis, we do not distinguish between differences

in computational time per iteration of the different algorithms and only refer to the

iteration count variable.

The initial profile shown in Figure 4.1 is assumed as the starting point of the first-

order methods while the quasi-Newton oBFGS algorithms start from the outcome

of 100 sweeps of the Adam reconstruction. As already mentioned, this choice is mo-

tivated by the attempt to satisfy the convexity requirement by locally approximating

the cost functional with its second-order Taylor approximation near a local mini-

mum.
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Figure 4.2: Cost versus sweep number. Top image: Gaussian RBFs; Bot-
tom image: Wendland RBFs. The blue, red, green and black curves refer
respectively to the following algorithms: Adam, SGD, oBFGS with reini-
tialization every NReIni = 10 sweeps and oBFGS (without reinitializa-
tion). The dashed lines correspond to level set pixel-based Adam and
SGD reconstructions.
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A visual analysis of Figure 4.2 leads to the following observations. First, Adam

performs better than SGD in the sense that it leads to a faster reduction of the cost

value with both basis functions considered. Adam seems to have converged by the

end of the simulation while this is not the case with SGD, especially when WL func-

tions are used.

Notice how different choices of RBFs affect the performance of the first-order schemes

considered. A comparison of these algorithms with their corresponding pixel-based

implementations shows that, with SGD, the parametrization leads to a slower reduc-

tion of the cost trend while, with Adam, it introduces a degree of instability resulting

in a more irregular curve.

Better outcomes are given by the application of higher-order schemes. In fact, oBFGS

improves the stability of the reconstruction and yields the lowest value of the final

cost. Furthermore, oBFGS performs better in the absence of the reinitialization pro-

cedure. This might be because the method is applied to start from a profile close

to a minimum of the cost due to the prior evolution given by the Adam iterations.

Hence, the reinitialization of the (inverse) Hessian approximation might lead to a

loss of information accumulated in previous iterations.

Monitoring the trend of the cost functional provides quantitative information

on the shape evolution. However, an exhaustive comparison of the optimization al-

gorithms requires an analysis of the final permittivity profiles (i.e. shapes) attained.

This study yields a visual comparison of the optimization algorithms considered. In

addition, it shows the diverse regularization effects due to the parametric represen-

tation of the shapes associated with different RBFs classes.
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Figure 4.3: Final permittivity profiles achieved. Top row from left to
right: SGD GA, Adam GA and SGD vox. Bottom row from left to right:
oBFGS GA, oBFGS ReIni GA, Adam vox.
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Figure 4.4: Final permittivity profiles achieved. Top row from left to
right: SGD WL, Adam WL and SGD vox. Bottom row from left to right:
oBFGS WL, oBFGS ReIni WL, Adam vox.
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When GA RBFs are employed, all algorithms considered are able to eliminate the

artefact included in the initial guess. Furthermore, they correctly localize the pres-

ence of a single target in correspondence with its true position, providing reason-

able information about its shape and size. However, the accuracy of the retrieved

estimations is different. According to what emerged from the cost trend analy-

sis, oBFGS GA leads to the best result. Nevertheless, all algorithms based on RBFs

parametrization provide more irregular shapes than pixel-based level set methods.

A possible improvement can be achieved by implementing an approach where the

centres of the RBFs are moved during the reconstruction. This extension will be dis-

cussed further below.

WL RBFs seem, overall, able to provide better results and smoother shapes. Con-

clusions similar to what described above about the capabilities of the algorithms to

eliminate artefacts and localize the true target can be derived from a visual analysis

of Figure 4.4. In particular, the outcome of oBFGS WL is again the closest to the true

profile.

All algorithms considered have been so far equipped with the same inexpensive,

flexible and efficient line search procedure. We briefly recall that this strategy pro-

motes smooth reconstructions by enforcing that the number of pixels that change

relative permittivity value is, at each iteration, included in a given interval Ivox . An

assessment of the robustness of the previous optimization algorithms with respect

to details of this specific line search is described hereafter.

In more detail, analogous reconstructions are performed but with respect to a dif-

ferent choice of Ivox . We briefly recall that the selection of this interval is generally

a trade-off. In fact, small values lead to a stable evolution but might suffer from

slow convergence while large values increase the speed of convergence but might

produce instabilities. Doubling this interval to Ivox = [10,32], we achieve the cost

trends illustrated in Figure 4.5.
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Figure 4.5: Cost versus sweep number doubling the extreme values of
Ivox . Top image: Gaussian RBFs; Bottom image: Wendland RBFs. The
blue, red, green and black curves refer respectively to the following al-
gorithms: Adam, SGD, oBFGS with reinitialization every NReIni = 10
sweeps and oBFGS (without reinitialization). The dashed lines corre-
spond to level set pixel-based Adam and SGD reconstructions.
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Figure 4.5 shows that faster reductions of the cost values occur initially due to the

extension of the interval Ivox . In other words, the shapes are allowed to change more

significantly at each iteration consequently providing a rapid convergence rate, es-

pecially at the beginning of the simulations. However, as expected, this also intro-

duces some instability as confirmed by the more irregular behaviour of the cost evo-

lutions compared to the trends depicted in Figure 4.2, especially in the final part of

the simulations. Incorporating an adaptive selection of the step size [101], [124], e.g.

reducing its amplitude as the iteration number increases, might be beneficial. How-

ever, this is outside the objective of this analysis and will not be investigated further.

4.4 A possible extension for GA RBFs

The results discussed above highlight how different basis functions yield diverse

shape reconstruction accuracies in the parametric framework adopted. In particu-

lar, WL RBFs outperformed GA RBFs in terms of the smoothness of the final bound-

aries estimated. In this section, inspired by [161], an extension of the previous re-

construction strategy explicitly aimed at improving the geometric preciseness of GA

RBFs is investigated.

The main idea is to reduce the distance between adjacent RBF centres as the al-

gorithm evolves. This should improve the representation capability of the parametrized

level set function, yielding therefore a more accurate approximation of the target

profile.

Although in principle these centres might be included as unknowns in the underly-

ing inverse problem so that their recovery can be attempted directly from the data,

this will not be realized in this study. In fact, according to preliminary numerical

experiments performed, the latter approach tends to introduce instability in the

reconstruction process degrading its overall performance. Instead, we propose to

modify the RBF configuration at specific iteration numbers such that the relative

distance between neighbour centres diminishes. More details are provided below.

We start the reconstruction by considering a setup analogous to the one de-

scribed in the previous section, namely where the centres are uniformly distributed

throughout the domain with a relative distance d = 12 pixels. Thus, we run some
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reconstruction iterations that should be sufficient to roughly localize the true loca-

tion of the targets and eliminate the artefacts possibly included in the initial guess

chosen.

Then, we reduce the relative distance between adjacent centres to d = 9 pixels and

perform further reconstruction sweeps. Afterwards, the same procedure is repeated

using d = 6 and d = 3 pixels respectively.

However, we recall that the adoption of a parametric representation has been orig-

inally motivated by the attempt to reduce the complexity of the problem. Hence,

since additional RBF terms increase the computational costs, we place these cen-

tres only in certain subregions of the domain as specified next. In the beginning, we

consider RBF centres uniformly distributed throughout the entire domain. Then,

once an approximate estimation of the target locations has been retrieved, we de-

fine a denser centre grid only in the subregions of the domain surrounding the ex-

pected target positions. Since the characterization of the objects improves as the

algorithm proceeds, the area of these subregions of interest is progressively shrunk

keeping the computational costs feasible.

Adopting the Adam optimization algorithm, the previous reconstruction strat-

egy is assessed by performing numerical experiments. The outcomes attained are

shown in Figure 4.6.
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Figure 4.6: Final permittivity profiles achieved. Top row from left to
right: true setup adopted; initial guess profile; Adam vox outcome after
130 sweeps. Bottom row from left to right: GA Adam reconstruction after
40 sweeps (d = 12); GA Adam reconstruction after 70 sweeps (d = 9); GA
Adam reconstruction after 130 sweeps (d = 3).

Figure 4.6 shows that, in the beginning, the method is able to eliminate the pres-

ence of the artefact included in the initial guess. Then, as the algorithm proceeds,

finer parametrizations lead to better and better approximations of the target shape.

The procedure seems to have a regularization effect without requiring the introduc-

tion of explicit penalty terms in the definition of the cost functional. Notice also that

the modification of the distance d does not introduce instability into the process.

To highlight the performance improvement attained, a visual comparison be-

tween the outcome of the previous reconstruction and the corresponding Adam

simulation illustrated in Figure 4.3 is shown in Figure 4.7.
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Figure 4.7: Final permittivity profiles achieved. From left to right:
true setup adopted; GA Adam with fixed centres after 200 sweeps; GA
Adam with reduction of the distance between adjacent centres after 130
sweeps.

For completeness, the evolution of the total cost trend against the sweep num-

ber associated with the considered GA extension is illustrated in Figure 4.8.
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Figure 4.8: Cost versus sweep number. The pink, blue, red, green and
black curves refer respectively to the following algorithms: GA Adam
with d = 12, GA Adam with d = 9, GA Adam with d = 6, GA Adam with
d = 3 and Adam vox.

According to Figure 4.8, the reduction of the cost associated with Adam GA and

Adam vox is comparable at the start of the simulation. However, it clearly shows that

the progressive diminution of the distance d produces a faster decrease in the cost
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value. Overall, the procedure increases the stability of the evolution as confirmed

by the more regular curve attained compared to the dashed ones, which represent

the continuation of the simulations run with higher d values. This stabilizing effect

is most likely due to the increased representation capability associated with closer

RBF centres. Finally, we specify that the line search interval adopted is equal to

Ivox = [5,16] and kept fixed during the entire evolution.

We end the section with the following considerations. Although only the Adam

algorithm has been considered in the previous analysis, we believe that the conclu-

sions attained do not depend on this choice. Hence, similar outcomes are expected

when assuming different optimization schemes.

Furthermore, since the final shapes achieved by WL RBFs are sufficiently smooth as

shown in Figure 4.4, the previous extension is not motivated for this class. There-

fore, it will not be investigated in this chapter.

4.5 Summary of the chapter

In this chapter, we presented a comparison of stochastic optimization algorithms

aimed at reconstructing the electromagnetic profiles of targets of interest hidden

behind walls. We adopted a novel parametric description of the domain where the

level set function associated with the system was expressed as a linear combina-

tion of Radial Basis Functions, which, to the best of the author’s knowledge, had not

been used before in TWRI applications. In particular, two classes of RBFs were con-

sidered: Gaussian RBFs and Wendland’s RBFs. Due to the reduction of the dimen-

sionality of the problem given by the parametric representation, we investigated

the performance of different stochastic optimization algorithms from the particu-

lar viewpoint of stochastic data selection in inverse scattering. These optimizers

were implemented in Matlab by the author in a way close to their standard form de-

scribed in the literature but including additional modifications necessary to specify

them to our problem of interest. Eventually, an extension of the previous recon-

struction strategy explicitly aimed at improving the geometric accuracy of Gaussian

RBFs was introduced and evaluated.



Chapter 5

TWRI target tracking using Bayesian

statistical inference

In this chapter we focus on tracking moving objects hidden behind walls starting

from indirect electromagnetic measurements. The goal is to follow their trajectories

in almost real-time, rapidly localizing their positions without achieving a detailed

characterization of their features. This represents a different problem compared to

what discussed in the previous chapters. Therefore, it introduces new challenges

whose solution requires developing a suitable mathematical framework here based

on Bayesian statistical inference.

In our application of interest, the object tracking problem amounts to following

target trajectories over time starting from a sequence of indirect sensor measure-

ments, i.e. a sequence of consecutively collected through-the-wall data. The task of

tracking moving objects has been largely studied in the literature [162], [163], [164],

[39] and its popularity derives from its large applicability and its underlying math-

ematical challenges. For example, complications might arise due to the variation

of the number of targets present in the field of view, possible false detections, and

presence of noise in the sensor measurements [165]. Therefore, developing robust

and efficient algorithms to overcome the previous limitations represents an active

research topic nowadays.

Traditional applications include air or sea space monitoring, where the objective is

to follow the motion of an aircraft or a ship for military or security reasons [166],

[167], [168], [169]. Additional difficulties are here given by the manoeuvring be-

haviour of the objects of interest, which might demand more challenging kinematic

144
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descriptions of their dynamics [170], [171]. Moreover, when multiple targets are in-

cluded in the field of view, data-association problems might arise. Namely, it might

be difficult to understand which sensor measures correspond to which object.

Early work in through-the-wall tracking was aimed at compensating wall ab-

sorption and distortion effects and reducing false object detections [172], [173],

[174]. In [175], a signal processing strategy is proposed to track multiple extended

targets in a scene by means of a wide-band monostatic through-wall radar. A mi-

crowave adjoint tomographic technique is adopted to identify candidate objects of

interest. Then, a tracking stage is implemented to retrieve the positions and dynam-

ics of the targets in real-time according to joint probabilistic data association rules.

Recently, object tracking has gained even more attention due to the advent of deep

learning in video imaging applications and computer vision. Tasks such as image

segmentation and trajectory reconstruction from image sequences (e.g. following a

person walking in a crowd in a video recording) have been successfully performed

by employing a combination of tailor-made neural networks and Bayesian inference

techniques, and the interest in this field is steadily growing [176], [177], [178].

In this chapter we adopt Bayesian inference tools to localize and track targets of

interest moving behind walls. The main applications of this study are surveillance

operations, hostage situations and, in general, activities in which police forces are

involved in monitoring a building without entering it for security reasons.

Data is given by through-the-wall measurements consecutively collected by deploy-

ing antennas around the building investigated. This can be practically realised, for

example, by mounting antennas on top of drones and flying them at the desired

locations. The collected data can be seen as indirect information on the target po-

sitions since their approximate localization requires solving an inverse scattering

problem, which in itself is a complex task. Therefore, the innovative component of

this chapter is the combination of regularization techniques for non-linear inverse

problems and Bayesian statistics. In fact, once an estimation of these locations

has been obtained, an approximation of the followed trajectories can be derived

through the application of Bayesian inference-based tools such as Kalman Filters

[179], [39] and Particle Filters [180], [181]. This has the advantage of incorporating

into account the a priori kinematic information available for the expected motions.

The ideas here proposed are extended in the following, where a tracking approach
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for through-the-wall applications is introduced and assessed numerically.

5.1 Bayesian statistical inference for target tracking

In this section we introduce the Bayes’ theorem and describe how it can be applied

to our tracking application. We clearly state that the derivation proposed below fol-

lows closely [39].

Given two events x and y, the Bayes’ theorem allows the computation of the

probability of the event x occurring having observed y in terms of the conditional

probability p(x|y). Denoting by p(x,y) the joint probability of events x and y and by

p(y) the probability of event y, the Bayes’ theorem states the following:

p(x|y) = p(x,y)

p(y)
, (5.1)

or, analogously:

p(x|y) = p(y|x)p(x)

p(y)
. (5.2)

In tracking terms, let x represent a dynamic state of the system and assume that the

probability density function p(x) summarises our prior knowledge about the system

state. Then, the objective of the tracking scheme is to update this knowledge having

observed y. The Bayes’ theorem provides a probabilistic answer by computing the

posterior conditional probability p(x|y) through Equation (5.1). In other words, it

gives a way to integrate past and current information through the concept of condi-

tional probability.

This approach is perfectly employable in our application. At each time step, we

would like to improve our estimation of the system state by incorporating the in-

formation provided by the current measurement. This yields eventually a recursive

tracking solution in which the core idea is to adopt the posterior distribution of the

system state at time step k−1 as the new prior distribution for the consecutive time

step k. More details are provided below.

Let us start by introducing some notation. Let xk denote the system state at time
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tk and let xk = (xk , ...,x0) be the sequence of system states up to tk . Then, the com-

plete probabilistic knowledge of the system is given by the joint probability distribu-

tion p(xk ) = p(xk , ...,x0). Furthermore, let yk be the observed measurement at time

tk and let yk = (yk , ...,y1) be the sequence of observations obtained up to tk . Then,

the application of the Bayes’ theorem through Equation (5.1) yields the posterior

distribution:

p(xk |yk ) = p(yk |xk )p(xk )

p(yk )
. (5.3)

Here, the likelihood function p(yk |xk ) provides the probability of observing the se-

quence of measurement yk given that the underlying state sequence is xk . Also,

p(xk ) denotes the prior distribution of the system state and p(yk ), namely the prob-

ability distribution of the observation sequence yk , can be seen as a normalization

factor.

Equation (5.3) provides the posterior given all the measurements. However, in a

recursive scheme, the goal is to determine the conditional probability distribution

p(xk |yk ) by incorporating the information provided by the measurement yk into the

prior p(xk−1|yk−1). This can be achieved as described below.

Noticing that xk = (xk ,xk−1), yk = (yk ,yk−1) and recalling Equation (5.3), let us

introduce the following convenient notation:

p(xk ) = p(xk ,xk−1) = p(xk |xk−1)p(xk−1), (5.4)

p(yk ) = p(yk ,yk−1) = p(yk |yk−1)p(yk−1), (5.5)

p(yk |xk ) = p(yk ,yk−1|xk ) = p(yk |yk−1,xk )p(yk−1|xk ) =

p(yk |yk−1,xk )p(yk−1|xk−1), (5.6)

where, in the last step, we made use of the so-called causality principle, namely that

the measurement at time tk−1 does not depend on the object states at future time

steps.

Hence, substituting (5.4), (5.5) and (5.6) into Equation (5.3) yields the recursive for-

mula:

p(xk |yk ) = p(yk |yk−1,xk )p(xk |xk−1)

p(yk |yk−1)
p(xk−1|yk−1), (5.7)
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where

p(xk−1|yk−1) = p(yk−1|xk−1)p(xk−1)

p(yk−1)
. (5.8)

Equation (5.7) can be simplified by adopting the hypotheses specified next. Firstly,

we assume that a measurement at a given time step depends only on the system

state at the corresponding time and is conditionally independent of measurements

taken at other times. Hence, p(yk |yk−1,xk ) simplifies to p(yk |xk ). Secondly, we as-

sume that the system follows the Markov property, namely that its state at time tk

depends only on its state at step tk−1. Hence, p(xk |xk−1) = p(xk |xk−1).

Therefore, under the previous hypotheses, Equation (5.7) can be rewritten as:

p(xk |yk ) = p(yk |xk )p(xk |xk−1)

p(yk |yk−1)
p(xk−1|yk−1). (5.9)

Formula (5.9) provides the conditional probability of the sequence of system states

xk given the sequence of observations yk . However, due to the recursive nature of

the measurement process of our tracking application, it is useful to further expand

the previous formula in order to determine a single state recursive conditional prob-

ability. This is realized through the marginalization shown below:

p(xk |yk ) =
∫

xk−1

...
∫

x0

p(xk |yk )dx0...dxk−1 =

∫
xk−1

...
∫

x0

p(yk |xk )p(xk |xk−1)

p(yk |yk−1)
p(xk−1|yk−1)dx0...dxk−1, (5.10)

or analogously:

p(xk |yk ) = p(yk |xk )

p(yk |yk−1)

∫
xk−1

p(xk |xk−1)

[∫
xk−2

...
∫

x0

p(xk−1|yk−1)dxk−2...dx0

]
dxk−1.

(5.11)

Notice that, for clarity, the integration variables have been specified by the sub-

scripts included in the previous notation. However, for simplicity, this will not be

realized in the following.

Hence, recognizing

p(xk−1|yk−1) =
∫

xk−2

...
∫

x0

p(xk−1|yk−1)dxk−2...dx0, (5.12)



5.1. BAYESIAN STATISTICAL INFERENCE FOR TARGET TRACKING 149

formula (5.9) becomes eventually:

p(xk |yk ) = p(yk |xk )

p(yk |yk−1)

∫
p(xk |xk−1)p(xk−1|yk−1)dxk−1. (5.13)

Conceptually, the derivation of p(xk |yk ) can be interpreted as a two parts procedure.

Firstly, a prediction part computes the expected state of the object at the consecu-

tive time step using the Chapman-Kolmogorov equation [182]:

p(xk |yk−1) =
∫

p(xk |xk−1)p(xk−1|yk−1)dxk−1. (5.14)

Afterwards, a filtering part incorporates the new measurement yk through the like-

lihood function p(yk |xk ) in order to compute the posterior.

A further specification of the previous formulas can be obtained by introducing

a dynamic and a sensor measurement equation. In more detail, the term p(xk |xk−1)

in Equation (5.13) can be interpreted as a transition probability of the system state.

Thus, this term can be defined by considering an object dynamic equation describ-

ing the a priori expected motion. Similarly, the term p(yk |xk ) in Equation (5.13) can

be specified by introducing a sensor measurement equation. This is realized next.

Let xk ∈Rnx denote the object state at time k. We assume that the object dynam-

ics can be modelled by an equation of the form:

xk = g(xk−1,vk ), (5.15)

where g : Rnx ×Rnv →Rnx is a twice continuously differentiable function and vk is a

white noise that accounts for modelling errors.

Similarly, let yk ∈ Rny be the observed measurement at time k. Then, a sensor

model can be described by an equation of the type:

yk = I(xk ,wk ), (5.16)

where I : Rnx ×Rnw → Rny is a twice continuously differentiable function and wk is

a white noise that accounts for measurement errors.
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According to [39], assuming that (5.15) can be solved for vk , i.e. that g−1 exists

and is continuously differentiable, we express the considered transition probability

as follows:

p(xk |xk−1) = pvk (g−1(xk ,xk−1))
∣∣∣∂g−1

∂xk

∣∣∣. (5.17)

Similarly, using (5.16) and assuming that I is invertible and continuously differ-

entiable yields:

p(yk |xk ) = pwk (I−1(yk ,xk ))
∣∣∣∂I−1

∂yk

∣∣∣. (5.18)

Eventually, substituting (5.17) and (5.18) into (5.13) yields:

p(xk |yk ) =
pwk (I−1(yk ,xk ))|∂I−1

∂yk
|

p(yk |yk−1)

∫
pvk (g−1(xk ,xk−1))

∣∣∣∂g−1

∂xk

∣∣∣p(xk−1|yk−1)dxk−1.

(5.19)

We conclude this section by specifying how the previous probability distribution

can be practically used to estimate the target trajectory. This is realized by adopting

the expected value x̂k of xk as the estimate of the system state at time tk , where in-

formation on the accuracy of this assumption is given by the covariance matrix Pk|k .

These moments can be explicitly computed as follows:

x̂k = E [xk |yk ] =
∫

xk p(xk |yk )dxk , (5.20)

Pk|k = E [(xk − x̂k )(xk − x̂k )T |yk ] =
∫

(xk − x̂k )(xk − x̂k )T p(xk |yk )dxk . (5.21)

The previous description provides the building blocks of any recursive Bayesian

tracking approach. From here, specific filters can be derived by introducing fur-

ther hypotheses according to the application considered. This will be realized in the

following section, where a Kalman filter is outlined and specialized to our through-

the-wall task.

5.2 Kalman filter

In this section we specialize the previous general recursive Bayesian derivation by

introducing additional hypotheses. This will eventually provide the so-called Kalman

filter, which is one of the most common tracking tools available in the literature.

This filter was originally introduced by Rudolf E. Kalman in [183] and rapidly gained
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popularity due to a combination of factors. Among them, we mention its ability to

extract useful information from noisy data efficiently, its simplicity, and its small

computational and memory requirements [184], [185], [186], [187].

Starting from the derivation outlined in the previous section, let us consider the

following additional hypotheses [39], [188]:

i ) the object dynamic and sensor measurement equations are linear. In other words,

they are of the type:

xk = Fxk−1 +vk , (5.22)

yk = Hxk +wk , (5.23)

where F and H are suitably defined matrices;

i i ) vk and wk are white, uncorrelated, Gaussian noise sequences with zero mean

and covariance Qk and Rk respectively;

i i i ) the posterior density p(xk−1|yk−1) of the object state at time tk−1 is Gaussian

with mean x̂k−1|k−1 and covariance matrix Pk−1|k−1.

Due to condition i ), Equations (5.17) and (5.18) can be rewritten as follows:

p(xk |xk−1) = pvk (g−1(xk ,xk−1))|∇xk g−1(xk ,xk−1)| = pvk (g−1(xk ,xk−1)), (5.24)

p(yk |xk ) = pwk (I−1(yk ,xk ))|∇yk
I−1(yk ,xk )| = pwk (I−1(yk ,xk )), (5.25)

since g−1(xk ,xk−1) = xk −Fxk−1 and I−1(yk ,xk ) = yk −Hxk .

Thus, substituting (5.24) and (5.25) into (5.19) yields:

p(xk |yk ) = pwk (I−1(yk ,xk ))

p(yk |yk−1)

∫
pvk (g−1(xk ,xk−1))p(xk−1|yk−1)dxk−1, (5.26)

with

p(yk |yk−1) =
∫

p(yk |xk )p(xk |yk−1)dxk =
∫

pwk (I−1(yk ,xk ))p(xk |yk−1)dxk . (5.27)

Notice that Equation (5.26) requires computing the integral of a product of density

functions. In order to simplify this operation, let us introduce the following theorem

[39], [189].
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Theorem 5.2.1. Gaussian product

Given x1,µ1 ∈Rd1 , H ∈Rd2×d1 , x2 ∈Rd2 and positive definite matrices P 1,P 2, it follows

that:

N (x2; H x1,P 2)N (x1;µ1,P 1) = N (x2; Hµ1,P 3)N (x1;µ,P ),

where P 3 = HP 1H T +P 2,µ=µ1+K (x2−Hµ1), P = P 1−K HP 1, and K = P 1H T P−1
3 .

Note that we adopted the notation N (x ;µ,Σ), x ∈Rn , to indicate the multivariate

normal distribution with mean vector µ ∈ Rn and covariance matrix Σ ∈ Rn×n . In

other words

N (x ;µ,Σ) = (2π)−n/2(detΣ)−1/2exp

[
−1

2
(x −µ)TΣ−1(x −µ)

]
, (5.28)

where detΣ is the determinant ofΣ. A proof of Theorem 5.2.1 can be found in [189].

From hypothesis i i ), Formula (5.24) simplifies to:

p(xk |xk−1) = N (xk ;F xk−1,Qk ). (5.29)

Similarly, from assumption i i i ), the prior distribution at step k, which coincides

with the posterior at step k −1 due to the recursive nature of the approach, can be

rewritten as:

p(xk−1|y k−1) = N (xk−1; x̂k−1|k−1,P k−1|k−1). (5.30)

Thus, the predicted density, i.e. the outcome of the prediction part of the recursive

procedure, becomes:

p(xk |y k−1) =
∫

p(xk |xk−1)p(xk−1|y k−1)d xk−1 =

∫
N (xk ;F xk−1,Qk )N (xk−1; x̂k−1|k−1,P k−1|k−1)d xk−1 =∫

N (xk ; x̂k|k−1,P k|k−1)N (xk−1; x̂k−1|k−1 +Gk (xk − x̂k|k−1), M k )d xk−1 =

N (xk ; x̂k|k−1,P k|k−1) (5.31)

where Gk = P k−1|k−1F T P−1
k|k−1, M k = P k−1|k−1 −Gk F P k−1|k−1, x̂k|k−1 = F x̂k−1|k−1

and P k|k−1 = F P k−1|k−1F T +Qk . Notice that we made use of Theorem 5.2.1 in the

latter computation.
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Similarly, from condition i i ), we have:

p(y k |xk ) = N (y k ; H xk ,Rk ). (5.32)

Hence, the normalization factor included in (5.26) can be computed as follows:

p(y k |y k−1) =
∫

p(y k |xk )p(xk |y k−1)d xk =

∫
N (y k ; H xk ,Rk )N (xk ; x̂k|k−1,P k|k−1)d xk =∫

N (y k ; ŷ k|k−1,Sk )N (xk ; x̂k|k−1+P k|k−1H T S−1
k (y k−ŷ k|k−1),P k|k−1−P k|k−1H T S−1

k HP k|k−1)d xk =

N (y k ; ŷ k|k−1,Sk ). (5.33)

Here, we introduced the notation: ŷ k|k−1 = H x̂k|k−1, Sk = HP k|k−1H T +Rk .

Eventually, by substituting the previous results into Equation (5.26), the poste-

rior density of the Kalman filter becomes:

p(xk |y k ) = p(y k |xk )p(xk |y k−1)

p(y k |y k−1)
=

N (y k ; H xk ,Rk )N (xk ; x̂k|k−1,P k|k−1)

N (y k ; ŷ k|k−1,Sk )
= N (y k ; ŷ k|k−1,Sk )N (xk ; x̂k|k ,P k|k )

N (y k ; ŷ k|k−1,Sk )
=

N (xk ; x̂k|k ,P k|k ), (5.34)

with x̂k|k = x̂k|k−1 +P k|k−1H T S−1
k (y k − ŷ k|k−1) and

P k|k = P k|k−1 −P k|k−1H T S−1
k HP k|k−1.

Equation (5.34) shows that, under the assumptions considered, the posterior p(xk |y k )

is also Gaussian. In other words, the Kalman filter is completely described by Gaus-

sian distributions. This is advantageous since a Gaussian distribution is ultimately

specified by its first two moments.

Therefore, the Kalman filter simply evolves by updating the posterior mean and co-

variance matrix as new measurements are observed. Overall, this strategy is sum-

marized by Algorithm 12.
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Algorithm 12 Kalman Filter Algorithm

Compute the predicted mean and covariance matrix:

x̂k|k−1 = Fx̂k−1|k−1, (5.35)

Pk|k−1 = FPk−1|k−1FT +Qk . (5.36)

Compute the predicted measurement, innovation covariance matrix Sk and Kalman

gain Kk :

ŷk|k−1 = Hx̂k|k−1, (5.37)

Sk = HPk|k−1HT +Rk , (5.38)

Kk = Pk|k−1HT S−1
k . (5.39)

Compute the posterior mean and covariance matrix:

x̂k|k = x̂k|k−1 +Kk (yk − ŷk|k−1), (5.40)

Pk|k = Pk|k−1 −Kk HPk|k−1. (5.41)

Notice that, according to Algorithm 12, the application of the Kalman filter can

be seen as a two parts procedure. Firstly, at time step k−1, a dynamic model is used

to forecast the target state at time step k (prediction stage); secondly, the filter cor-

rects the previous estimation by accounting for the measurement corresponding at

time step k (update stage).

5.3 CWNA kinematic model

The introduced Bayesian tracking framework relies on a dynamic equation to de-

scribe the expected motion of the targets. The choice of this model depends on

the application considered. In our research we are generally interested in identi-

fying people moving behind walls, and their trajectories are in principle arbitrarily

complex. However, in this proof-of-concept study, we begin by assuming that each

target moves according to an almost constant velocity model. This should be suffi-

cient to evaluate the performance of the proposed tracking scheme, but more com-

plicated dynamics can certainly be considered.
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Following [188], we derive the so-called Continuous White Noise Acceleration

(CWNA) kinematic model by setting to zero a certain derivative of the position. In

the absence of noise, this would yield a motion described by a polynomial equation

in time. However, since the assumption of no disturbances is not realistic, we incor-

porate the presence of random continuous time white process noise.

Given a generic spatial coordinate ξ, a constant velocity motion is described by the

equation

ξ̈(t ) = 0, (5.42)

where each dot stands for a time derivative. As anticipated, in order to make the

model more realistic, we assume a dynamic equation of the type:

ξ̈(t ) = ṽ(t ), (5.43)

where ṽ(t ) is a continuous time white noise such that:

E [ṽ(t )] = 0, (5.44)

E [ṽ(t )ṽ(τ)] = q̃δ(t −τ), (5.45)

where q̃ ∈R+ is the noise intensity.

Denoting by x = [ξ, ξ̇]T the state vector, we introduce the CWNA model through the

following continuous time state equation:

ẋ(t ) = Ax(t )+D ṽ(t ), (5.46)

where

A =
[

0 1

0 0

]
, (5.47)

D =
[

0

1

]
. (5.48)

However, since the recursive Bayesian scheme works on discrete time steps, a dis-

crete time dynamic equation with sampling period T is derived from (5.46). This

yields:

xk = F xk−1 +v k , (5.49)
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with

F = exp(AT ) =
[

1 T

0 1

]
. (5.50)

Here, the discrete time process noise is related to the continuous time noise as:

v k =
∫ T

0
e A(T−τ)D ṽ(kT +τ)dτ, (5.51)

and its covariance matrix can be directly computed as:

Q = E [v k v T
k ] =

[
T 3/3 T 2/2

T 2/2 T

]
q̃ . (5.52)

Since the order of magnitude of the velocity changes is
√

q̃T , an almost constant

velocity model can be obtained by selecting a noise intensity value q̃ such that the

changes of velocity due to process noise are small compared to the actual velocity

component amplitudes.

Although the previous derivation has been outlined in 1D, higher dimensional ex-

tensions can be easily achieved by adopting the following assumptions [188]: the

motion along each coordinate is decoupled from the other coordinates; noise com-

ponents associated with different coordinates are mutually independent with pos-

sibly diverse covariance matrices; the same dynamic is considered in each direction.

5.4 Numerical results

In this section we propose a tracking scheme for through-the-wall applications based

on the combination of regularization techniques for non-linear inverse problems

and a Bayesian Kalman filter. The objective is to follow the trajectories of moving

targets hidden within a building starting from a sequence of through-the-wall mea-

surements performed at consecutive time steps.

More specifically, adopting a 2D setup in which a single target moves according to

an almost constant velocity model (i.e. a CWNA kinematic model), the objective of

this study is to retrieve its trajectory employing the procedure specified below. We

clearly state that the content of this section follows closely our previous publication

[40].
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The process is overall divided into two parts. In the first one, we focus on char-

acterizing the target of interest by retrieving information on its geometry, size and

location. Here, a level set-based shape reconstruction is realized that, as described

in Chapter 3, is able to provide precise estimations requiring however high compu-

tational costs. This step also provides the dynamic information needed to initialize

the Kalman filter, namely an approximation of the velocity of the target motion.

The second part of the process focuses instead on almost real-time object tracking.

Here, the necessity of rapidly localizing the target motivates the adoption of a fast,

pixel-based AFM reconstruction instead of the previous level set scheme. In more

detail, we adopt an AFM equipped with optimally truncated sparsity regularization

in order to identify candidate object positions.

Notice that our procedure differs from a standard tracking application since the ob-

servations of the target dynamic states are not directly given as sensor measure-

ments but are computed indirectly by solving an inverse scattering problem.

The proof-of-concept experiment discussed below is realized in a 2D setup in

which the propagation of the fields is described using the Helmholtz model intro-

duced in Chapter 3. As already anticipated, we begin by considering a shape recon-

struction performed according to Algorithm 5 aimed at retrieving the compact pro-

file of the object assuming known its relative permittivity value and the background

environment. Then, almost real-time tracking is accomplished by rapidly localizing

the target through the application of a few iterations of Algorithm 4 equipped with

sparsity regularization.

The numerical setup adopted in this study is analogous to that chosen in Chap-

ter 3. Briefly, we model a domain of size 8m×4m by using a grid including 400×200

pixels, each with a size of 2cm × 2cm. Here a building of dimension 7m × 3m is

considered, surrounded by a set of 178 sources and 174 receivers placed outside

its external walls. Each antenna operates at the following frequency values: f =
{50,75,100,125,150,175,200}MHz.

As for the relative permittivity, we assume the following values: εai r = 1.0 for the

background, εw all s = 2.0 for the walls and εt g = 6.0 for the target. Furthermore,

the electrical conductivity is constant everywhere and equal to σ = 0.01S/m, while

the other parameters are fixed to the following background values: µ = µ0 = 4π×
10−7H/m and ε0 = 8.854×10−12F/m.
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Initially, level set reconstructions are realised for the first three time steps anal-

ysed. An estimation of the target centre is attained as the minimum of the associ-

ated level set function reached after 70 iterations. See Figure 5.1. Notice that a point

approximation of the target position could also be obtained using alternative pro-

cedures, for example, by computing the centre of mass of the reconstructed shape

at each step.

A simple linear regression based on these estimated positions yields an approxima-

tion of the constant velocity of the motion. This information is used to initialize the

Kalman filter as anticipated.

Then, the aim of performing almost real-time tracking motivates the adoption of a

sparsity pixel-based reconstruction in which the local maxima of the retrieved pro-

file are assumed as candidates for the target location at the considered time step.

See Figure 5.2. Due to the presence of artefacts, sparsity reconstructions stopped at

early iterations (i.e. after 15 sweeps) provide several candidate positions. However,

in our implementation of the Kalman filter, only one single target observation is re-

quired for each time step. Hence, a single estimation needs to be selected. Notice

that this process is similar to the data association problem that commonly occurs in

multi-target situations. This selection is here realized according to a nearest neigh-

bour criterion [190] that, at time step k, singles the candidate closest in Euclidean

distance to the Kalman filter posterior mean estimate obtained at step k −1.

Thus, by repeating this procedure for all time steps considered, the application of

Algorithm 12 provides an approximation of the followed trajectory. The outcome

achieved is illustrated in Figure 5.3.
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Figure 5.1: Level set shape reconstructions for the first three time steps.
The true shape of the target is indicated as a black ellipse in each image,
whereas the reconstructed profiles are visible as blue shapes against the
yellow background.
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Figure 5.2: Reconstructions of the permittivity profile using an AFM
equipped with optimally truncated sparsity regularization. The cumula-
tive permittivity updates achieved at time steps 4, 5, 6, and 7 are shown.
The local maxima of the retrieved profiles are highlighted by red dots.
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Figure 5.3: Tracking results. The true shape and position of the object are
indicated by black ellipses for each time step considered. The measure-
ments provided by the sparsity algorithm, the dynamic predictions and
the Kalman Filter (KF) outcomes are displayed respectively as blue cir-
cles, cyan diamonds and red squares. The profiles given by the level set
reconstructions realized in the first three time steps are shown as blue
shapes against the yellow background.

5.5 Beyond the Kalman filter

The results obtained in the previous section show that a Kalman filter operating

on indirectly collected target measurements is capable of performing tracking, pro-

vided that an a priori dynamic model for the expected motion is available.

We started our analysis by considering linear dynamic equations describing an al-

most constant velocity motion in line with the requirements of the Kalman filter.

However, we are aware that these assumptions might produce an oversimplifica-

tion of actual real-world applications. In fact, although it is generally reasonable to

adopt additive Gaussian noise perturbations and it might be computationally ad-

vantageous to assume a Gaussian approximation of the posterior distribution, the

dynamic and sensor equations are often non-linear.

In these cases, despite an exact analytical computation of the posterior density is
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not generally possible, good approximations can be achieved by employing gen-

eralized recursive tracking algorithms such as Extended Kalman Filters or Particle

Filters [39], [180], [191].

However, notice that even these extensions require a priori dynamic models to de-

scribe the expected motion of the targets. This constitutes a limitation in all appli-

cations where the definition of such models is problematic.

Furthermore, in these approaches, since the localization of the objects is realized

indirectly, the accuracy of this estimation strongly depends on the performance of

the algorithms employed to solve the underlying inverse problem.

Taking into account the previous observations and recalling that in our problem

of interest the expected motion can in principle be arbitrary and difficult to model a

priori, we prefer to continue the process of developing tracking techniques by con-

sidering a different approach, namely data-driven solutions.

In the next chapter, we will introduce deep learning networks to map the measure-

ment data directly to the object positions without solving the underlying inverse

problem. However, we will enhance the performance of these networks by incor-

porating information suggested by mathematical considerations and by the results

achieved in this chapter.

5.6 Summary of the chapter

In this chapter, we presented a tracking approach based on consecutively collected

through-the-wall measurements aimed at following the motion of objects of interest

hidden behind walls. This operation differs from a traditional tracking application

in that the target observations do not directly provide dynamic knowledge about the

system state and this information needs to be retrieved by first solving an inverse

scattering problem. The combination of an optimally truncated sparsity regulariza-

tion and a Kalman filter represents the novel component of the proposed tracking

scheme. Numerical experiments confirmed the ability of this approach to retrieve

information on target trajectories provided that an a priori kinematic model for the

expected motion is available. Eventually, the attempt to relax the previous require-

ment led to the idea of machine learning-based tracking, which will be investigated

extensively in Chapter 6.



Chapter 6

Data-driven target tracking for TWRI

applications

In this chapter a data-driven solution for through-the-wall target tracking problems

is proposed. The goal is to define a procedure that can reliably identify objects of

interest hidden inside a building starting from through-the-wall measurements and

follow their movements over time.

The main idea is to map the measurements directly to the target locations without

solving the underlying inverse scattering problem. This is realized by adopting a

hybrid data-driven tracking scheme based on neural networks where traditional in-

verse problem concepts and modern deep learning aspects are combined.

In the previous chapter, we introduced a Kalman filter approach based on Bayesian

statistical inference to tackle an analogous problem. Although that strategy pro-

duced good results in the numerical examples analysed, it suffered from some limi-

tations. Firstly, at each time step considered, the localization of the targets implied

the reconstruction of an unknown permittivity profile by solving a non-linear in-

verse scattering problem, which in itself is a challenging operation. Additionally,

due to the structure of the Kalman filter, it required a priori information on the ex-

pected motions. However, as already described, the definition of an a priori kine-

matic model might be problematic in several applications.

The attempt to overcome the previous limitations motivates the decision to focus

on machine learning-based tracking schemes. Another advantage of data-driven

models is their numerical efficiency. Once trained, neural networks are generally

163
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able to localize objects of interest faster than traditional inverse problem-based re-

construction techniques. Thus, they are better suited to be applied when (almost)

real-time estimates are sought. A more detailed analysis of the properties of these

techniques is discussed in the following.

Throughout this chapter we distinguish between stationary and moving objects.

Stationary targets define a background environment that, for simplicity, is assumed

unchangeable. Moving targets are instead tracked once they enter the scenery. Here,

information on the followed trajectories is retrieved by localizing the objects of in-

terest at consecutive time steps. Each set of measurements (i.e. each time step) is

treated singularly and independently, and the time correlations between consecu-

tive estimations are not considered. Notice that this represents a major distinction

compared to the operating principle of Bayesian inference-based tracking methods,

where the prediction at the current time depends on the past history of the system.

The structure of this chapter is outlined hereafter. We begin by formulating the

problem of localizing targets included in a building of interest as a classification

task. Once this classification problem has been defined, a multi-input neural net-

work is employed to map through-the-wall measurements directly to the object lo-

cations. To the best of the author’s knowledge, this analysis is the first application

of a model bagging inspired, deep learning-based technique for through-the-wall

tracking. Single and multi-target 2D setups are numerically tested assuming differ-

ent antenna configurations.

Motivated by the positive results achieved in 2D, a 3D data-driven tracking exten-

sion is considered next to test the reliability of our approach in more realistic sce-

narios. Eventually, the possibility of incorporating a priori available dynamic infor-

mation is discussed at the end of the chapter.

6.1 Target tracking in 2D

In this section, we formulate the problem of tracking moving objects in a 2D setup

from through-the-wall measurements.

We begin by specifying that the Helmholtz model introduced in Chapter 3 is adopted

to numerically approximate the propagation of the electromagnetic fields within
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the domain of interest.

As already anticipated, since in our analysis we distinguish between stationary and

moving targets possibly included in the monitored building, we split the proposed

approach into two parts: a shape reconstruction problem for the static background;

a tracking problem for the moving objects once they have entered the scenery.

This assumption is particularly convenient when the recovery of the background

environment can be obtained as a preprocessing operation realized on data col-

lected in the absence of moving objects, perhaps measured overnight when the

monitored building is thought to be empty. A similar hypothesis has been assumed

in Chapter 4.

In the first part, the identification and characterization of stationary objects amount

to recovering an unknown permittivity profile that satisfies the measurements sim-

ilarly to what realized in Chapter 3. In practice, this operation is important to recog-

nize the presence of furniture or objects with specific permittivity values and there-

fore better understand the activities that take place inside the monitored building.

This reconstruction is realized by employing a level set scheme according to Algo-

rithm 5.

In the second part, tracking moving targets in almost real-time implies constraints

in the amount of processing time available to locate these objects at a given time

before having to move to the set of measurements associated with the next step.

Therefore, rapid estimations of the target positions are necessary. A data-driven so-

lution based on deep learning is here considered. More information is provided in

the next section.

6.1.1 Data-driven tracking

Characterizing and localizing targets of interest starting from electromagnetic data

has been widely explored in the literature [192], [193], [194], [195]. Traditional in-

verse problem-based techniques like the MUSIC algorithm [196], [197], the linear

sampling method [198], [199] and level set schemes [102], [91], [200] have been

proven able to retrieve objects embedded in known backgrounds in a variety of

applications. More recently, different deep learning-based strategies [201], [202],

[203], [204] have been successfully applied to similar problems starting from mea-

surements of the scattered fields at known locations.
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Traditional inverse problem-based reconstruction strategies are generally highly

reliable and offer the possibility of adding into account prior information on the sys-

tem, when available, for example by adopting tailor-made regularization strategies.

At the same time, they are usually computationally involved and expensive.

Faster tracking algorithms can be designed using machine learning which, however,

suffers from other limitations. Among them, there is a strong dependence on the

quality of the data set available for training, which should be rich enough to com-

pletely describe the phenomena under consideration [205], condition that may be

difficult to fulfil for all applications where collecting data is expensive or time con-

suming.

We believe that these two approaches are complementary. Hence, we propose a hy-

brid scheme for our through-the-wall tracking problem based on deep learning net-

works but further boosted by incorporating readily available information derived

from the inverse problem theory.

In general, adding prior knowledge into a neural network is an active field of re-

search nowadays and, in most cases, requires considerations connected with the

inherent nature of the problem addressed. We refer for example to [205] and [206]

for some recent work on this.

In our application, we introduce specific combination strategies involving distinct

and independent neural networks that operate by learning features whose selection

is partially suggested by the inverse problem theory. This approach can be seen as a

generalization of the popular concept of model bagging [207].

In more detail, the idea here explored consists of rewriting the localization task as

a classification problem, which can be then addressed by using deep learning. We

divide the domain of interest into Nc sub-regions by constructing a coarse grid and

specify in which cells of this grid the objects are located at each time step.

In other words, this is equivalent to learning a map from the input data to the asso-

ciated target positions directly by using neural networks. As input data we consider

not only the measurements of the electric field at the receivers but also information

that summarises the descent directions for the cost (3.96). This choice is inspired by

the supervised descent learning methods taken in [208], [209], [210] and the deep

gradient descent method proposed in [211]. In particular, we compute stacked de-

scent directions for the cost (3.26) on all source antennas according to [38]. Then,

similarly to the concept of pooling [207] commonly used with convolutional neural

networks, we summarise this information by considering only its maximum value in
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every cell of the coarse grid. This produces a reduction of the memory requirements

involved, improves the numerical efficiency and stability, and eventually yields an

image-format type of data that is also fed into the network.

6.1.2 A deep classifier network for target tracking

In this section, more technical details on the neural networks considered are pro-

vided. According to [207], the selection of the architecture of a neural network is

generally problem-specific. The critical point is to match the complexity of the data

with the complexity of the network [212], [213]. The selection of a particular struc-

ture should be motivated by the types of data considered, by the nature of the fea-

tures that we aim at learning and, overall, it might introduce a positive regulariza-

tion effect that helps improve the global performance [214].

In this work, a suitable network is introduced for each type of input data con-

sidered. This leads to the definition of two distinct deep classifiers whose outcomes

are eventually combined by using fixed-rule strategies inspired by probabilistic ar-

guments, which do not involve any active learning process. More details on the

multi-input architecture overall defined are given below.

We define a ‘Classifier 1’ as a Multi-Layer Perceptron (MLP) trained on the direct

measurements collected at the receivers, which aims to learn a map between mea-

sured fields and target positions directly.

A brief mathematical characterization of this network is given hereafter. Let L be

the total number of layers and let nl be the number of neurons included in the

layer l -th, l = 1, ...,L. According to the notation introduced in [215], we denote by

W [l ] ∈ Rnl×nl−1 and b[l ] ∈ Rnl the matrix of weights and the vector of biases of the

l-th layer respectively, given an input x ∈ Rn1 . This network can be seen as a map

from Rn1 to RnL such that:a[1] = x ,

a[l ] =σ(W [l ]a[l−1] +b[l ]), l = 2, ...,L.
(6.1)

Here, a[l ] ∈Rnl denotes the activation (i.e. outcome) of the l -th layer while σ(·) rep-

resents an element-wise non-linear activation function.
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The second network considered, hereinafter referred to as ‘Classifier 2’, is a Con-

volutional Neural Network (CNN) trained on the summarised data given by the com-

putation of the descent directions for the cost (3.96) as described before. The choice

of this architecture is motivated by the search of spatial correlations in the input

data [216]. Mathematically, each convolutional layer can be described as follows.

Given an input x with channel index set J , it produces an output y with channel

index set I such that:

yi =σ(
∑
j∈J

wi j ∗x j +bi ), i ∈ I , (6.2)

where ∗ denotes the convolution operator [211].

More details on the activation and loss functions used are provided hereafter

following [42]. According to [215], given a training set {x (i )}N
i=1, let us assume that

each data point x (i ) is associated with a label li ∈ {1, ...,K } specifying the class of the

sample considered among the K possible choices. Moreover, let v (i ) ∈ RK be the

outcome of a generic network for the input data x (i ), assuming that its j -th compo-

nent is large when x (i ) is likely to belong to the j -th class. Then, the application of

the softmax activation function σSM (·) on v (i ) yields:

σSM (v (i )
j ) =

exp v (i )
j∑K

m=1 exp v (i )
m

, j = 1, ...,K . (6.3)

Each outcome σSM (v (i )
j ) can be seen as the probability that the data point x (i ) be-

longs to the j -th class estimated by the network.

In order to reliably identify the true class of each example considered, the following

categorical cross-entropy loss function is selected:

l oss =−
N∑

i=1
log

 exp v (i )
li∑K

j=1 exp v (i )
j

 . (6.4)

Both Classifier 1 and Classifier 2 are trained by adopting a cross-entropy loss. Fur-

thermore, as shown in Figure 6.1, they both end with a softmax activation function,

although a ReLU activation function

σReLU (x) = max{x,0}, x ∈R, (6.5)
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is used for each of their hidden layers.

Figure 6.1 also shows that a batch normalization is realized on the input data to im-

prove stability. Finally, dropout layers [207] are introduced to counter over-fitting.

As discussed in [217], these layers promote neuron independence since the final

network parameters computed can be considered the result of an average of learn-

ing processes realized on networks with different architectures.

The number of neurons in the input layers is chosen based on the number of fea-

tures of the input datasets. More specifically, with the MLP, we use a number of neu-

rons equal to the number of available receivers. Instead, with the CNN, due to the

pooling operation realized on the stacked descent directions, we consider a number

of neurons equal to the number of cells in the coarse grid. The number of neurons in

each hidden layer is carefully selected to counter the formation of under-fitting and

over-fitting issues. Since we are solving a classification task, the number of neurons

in the output layers corresponds to the number of possible classes. These consid-

erations clearly highlight the dependence of the network structure on the antenna

configurations used to collect the through-the-wall measurements.
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Figure 6.1: Architecture of the global 2D classifier considered. The
blocks corresponding to Classifier 1 and Classifier 2 are highlighted.
Their outcomes are combined using a predefined fixed rule as described
in the text.
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Each classifier is trained individually and independently. A supervised learn-

ing approach is considered in which the trainable parameters of the network are

assigned according to the so-called Adam optimization algorithm [151] aimed at re-

ducing the value of the loss function [212].

This procedure requires a large amount of (training) data, that, in this work, is syn-

thetically generated by solving the Helmholtz model introduced in Chapter 3. For

each sample, a single elliptical target is embedded in the true stationary background

and the associated field values are computed at the receivers. Furthermore, in order

to increase the variability of the training data set, the target relative permittivity val-

ues are randomly selected in the range ε ∈ [5,8]. In addition, different object sizes

and orientations are considered for the same purpose.

The richness of the data set is further increased by adopting a data augmentation

technique which consists of synthetically expanding the (training) data set by ap-

plying transformations to the original measurements [218]. In this work, the gener-

ation of new samples is realized by adding small noise perturbations to the original

ones. According to [207], this might help to prevent over-fitting issues and boost the

training process.

More details on the input data are specified next. As anticipated, the MLP is

fed with data given by measuring the fields at the receivers. Numerical experiments

show that this classifier performance can be improved by subtracting from the con-

sidered data the field contributions obtained in the presence of the stationary back-

ground only, i.e. without moving targets. Once this subtraction has been calculated,

the corresponding results are turned into real numbers by computing their norms,

which are then fed into the MLP network.

The input of the CNN classifier is given by the computation of the stacked descent

directions for the cost as already mentioned.

The description of the network structure ends by specifying the procedure adopted

to combine the estimations given by each classifier. As anticipated, this is here real-

ized according to fixed rules.

The combination of multiple simple classifiers has been successfully employed in

several applications [219], [220]. By specializing each of them on a specific aspect

of the feature space, this approach has been shown able to outperform the use of

a single large classifier in terms of both accuracy and stability [221]. This approach
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might also be computationally advantageous for the next reasons: multiple simple

classifiers can often be trained in parallel; it avoids the expensive task of training

large networks.

According to [222], [223], the combination generally improves the generalization ca-

pability of the global network since it may merge complementary information. This

usually happens if the single classifiers considered are trained on different features

or on independent data sets.

In this work, the combination is based on the application of the so-called product

and sum rules [224]. For each cell, they essentially consist of multiplying or sum-

ming the confidence score (i.e. an approximation of the probability of the coarse

grid cells to contain a target) given by each classifier and eventually selecting the

cell with the highest value.

Mathematically, let y 1, y 2 ∈RK be the (softmax) outcomes of Classifier 1 and Classi-

fier 2, the combined prediction ỹ ∈RK is computed as follows:ỹi = y1,i y2,i
Np

, with the product rule,

ỹi = y1,i+y2,i
Ns

, with the sum rule,
(6.6)

where i = 1, ...,K and Np , Ns are normalization factors. Hence, the location esti-

mated for the target is the k-th cell, where

ỹk = max
j∈[1,K ]

ỹ j . (6.7)

6.2 2D numerical results

In this section we evaluate the numerical performance of the combined classifier

defined before. In each experiment considered, we assess firstly the preliminary

estimations given by Classifier 1 and Classifier 2 singularly. Then, the possible im-

provement produced by the application of the fixed rule strategies is discussed.

The tracking scheme here proposed does not require dynamic assumptions a

priori, making it more generally applicable than traditional Bayesian tracking al-

gorithms. At the same time, this lack of dynamic assumptions translates into the

inability of the model to account for time correlations between consecutive esti-

mations. Although there are neural network architectures developed explicitly to
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handle time dependencies, such as Recurrent Neural Networks (RNNs) [207], we

prefer to focus on MLPs and CNNs as they have proved very successful in classifica-

tion tasks [225], [226], [227]. Furthermore, according to the modality in which the

training data is generated in our study, we do not have natural training trajectories

that would be instead required by RNNs. Although in principle these trajectories

could be artificially defined, this operation would inevitably introduce hypotheses

about the possible motions that may affect the capability of the network to recover

dynamics not seen during training. In fact, we recall that in our application data is

given by through-the-wall measurements corresponding to specific system config-

urations. A sequence of these measurements might describe sequential steps of a

well-defined trajectory, but this condition is not strictly required. This arbitrariness

motivates even further why no a priori dynamic assumptions are incorporated in

our deep learning tracking approach.

We conclude this preamble with some technical information. The numerical

implementation of the networks has been realised using the Keras library available

for Python. Furthermore, all training tasks are run on an Nvidia V100 GPU, while

the remaining operations are performed on a workstation equipped with an Intel

Xeon 3.40GHz CPU.

6.2.1 2D background reconstructions

In this section we discuss the numerical results achieved when performing level set

reconstructions of the unknown stationary objects possibly included within the do-

main. As mentioned before, this operation defines the first step of the data-driven

tracking approach analysed in this chapter.

Let us begin by providing some information on the numerical setup adopted.

Similarly to Chapter 3, we model a domain with dimension 8m× 4m using a grid

of 400×200 pixels, each of size 2cm×2cm. Here, we schematize a building of size

7m× 3m by specifying its walls. Each of these walls has a thickness of 10cm and

a relative permittivity equal to εw all s = 2.0. The latter value is selected according

to the review [14]. The electrical conductivity is constant everywhere and equal to

σ = 0.01S/m. Additionally, the following background values are chosen: µ = µ0 =
4π×10−7H/m, ε0 = 8.854×10−12F/m.
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Inside the building, two stationary objects (which, for example, might model the

presence of furniture) with different shapes and with relative permittivity of ε f ur =
4.0 are included. The rest of the domain is filled with air, i.e. εai r = 1.0.

Two configurations of antennas are investigated: a full view setup including 178

sources and 174 receivers; a limited view setup containing 61 sources and 60 re-

ceivers. See Figure 6.2. In both cases, these antennas operate at the following fre-

quency values: f = {50,75,100,125,150,175,200}MHz. Any frequency dependence

of the electromagnetic parameters is neglected for simplicity.

The outcomes obtained after 80 sweeps of level set reconstructions realized ac-

cording to Algorithm 5 are illustrated in Figure 6.2.
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Figure 6.2: To the left: true permittivity profiles; To the right: level set
retrieved shapes. Top row: full view configuration; Bottom row: limited
view configuration.

Figure 6.2 shows that high precision is obtained in the full view configuration,
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where the shape estimates provide an accurate approximation of the size and lo-

cation of the objects of interest. However, note that the level set representation

adopted does not seem able to minutely retrieve some small details of the targets,

for example the corners of the square object.

Additionally, Figure 6.2 shows that in the limited view configuration the method

only identifies the stationary object closest to the antennas. This is in line with the

findings of the sensitivity analysis discussed in [99], which describes how the sensi-

tivity of the antennas reduces as the relative distance from the targets increases.

We conclude the section by recalling that these reconstructions are used as back-

ground profiles for the consecutive tracking task aimed at following the trajectories

of moving targets once they enter the building.

6.2.2 2D examples in a full view setup

In this section we describe the tracking results obtained by performing numerical

experiments adopting the full view antenna setup introduced before.

As already mentioned, tracking is here realized by independently recovering the po-

sition of the moving targets at consecutive time steps. In particular, the localization

problem is reformulated as a classification task by introducing a coarse grid that

divides the domain enclosed between the walls into Nc = 119 squared cells, each

containing 20×20 pixels. Therefore, the position of each target present at a given

time is specified by identifying the coarse grid cell in which it is placed.

The generation of the test data set is synthetically realized as follows. For each

time step, a distinct system configuration (i.e. target position) is considered. Thus,

the Helmholtz model is used to numerically approximate the values of the fields

corresponding to these configurations at the receivers. Notice that the stationary

background here assumed is the true profile, not the level set estimation obtained

previously. Although this operation closely resembles the creation of the training

set discussed before, some differences are included. For example, cross-shaped tar-

gets are here considered (while elliptical ones have been assumed for the genera-

tion of the training set). As for the antennas used, both training and test data are

generated by considering a single frequency value, namely f = 100MHz. Although

multiple frequencies can certainly be adopted, this would imply an increase in the

complexity of the problem and might require longer training processes. Hence, for
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simplicity, this is not done in our proof-of-concept study.

The first numerical experiment considered attempts to follow the motion of a

single target. Following [42], the application of the multi-input neural network in-

troduced before yields the outcomes summarised in Figure 6.3.
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Figure 6.3: Predictions of the classifiers against the real trajectory in a
full view setup. For each of the 19 time steps considered, the true lo-
cation of the target is illustrated by a cross, which moves from left to
right within the building. The highlighted cells indicate the predictions
given by the networks at consecutive time steps. The stationary back-
ground assumed is the result of a prior level set shape reconstruction as
described in the text. Top row from left to right: Classifier 1 and Classi-
fier 2. Bottom row from left to right: product and sum rules.

Figure 6.3 shows that, although every single classifier provides good estimations

when used individually, some small errors in identifying the correct locations are

present. As expected, the combination of independent information through the ap-

plication of the fixed rules yields a performance improvement. In particular, in this
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example, full accuracy is attained.

It is important to highlight that we have assumed to know a priori the number of

moving objects included in the building in the previous experiment. Consequently,

the network training has been realized by considering only data generated in the

presence of a single moving object.

We are aware that the previous assumption requires information that might not be

available in practice. Therefore, we believe it is necessary to study how the network

performs when this hypothesis is relaxed.

To shed some light on this, we run a similar experiment in which mistakenly as-

sume that the expected number of targets is equal to one while two moving objects

are included inside the building [42]. In other words, although the network training

is accomplished by considering data generated assuming the presence of a single

moving object, the network is then used to make predictions in a multi-target con-

figuration. This provides the results summarised in Figure 6.4.
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Figure 6.4: Predictions of the classifiers against the real trajectories in
a full view setup. For each time step considered, the true locations of
the targets, which move from left to right, are illustrated by crosses. The
highlighted cells indicate the predictions given by the networks at con-
secutive time steps. The stationary background assumed is the result of
a prior level set shape reconstruction as described in the text. Top row
from left to right: Classifier 1 and Classifier 2. Bottom row from left to
right: product and sum rules.

Due to the training modality adopted, each network is bound to provide a single

predicted location per time step as an outcome. Also, recalling that the antenna sen-

sitivity decreases with the distance, the previous observations justify why the single

classifiers identify only one of the locations of the two targets, often the closest to

the sources.

Note that if the motion is expected to be continuous, the frequent jumps of the re-

trieved trajectory can be interpreted as an indication that the assumptions originally

made do not hold.

We specify here that, in our approach, we do not consider data association problems

that commonly arise in multi-object tracking [228], [39]. In fact, solving each time

step independently, we are only interested in determining which cells of the coarse
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grid are occupied at a given time regardless of which were occupied before. How-

ever, time correlations might emerge when comparing estimations corresponding

to consecutive time steps.

The traditional deep learning way to improve the previous results is to generate

a new training data set by considering configurations in which two targets simul-

taneously move within the domain. However, this is highly expensive and, if the

number of targets present increases, an analogous operation needs to be repeated

again. Therefore, to circumvent the above limitations, we propose to approximate a

multi-target training dataset starting from single-target data only as described next.

Inspired by the superimposition principle [229] valid for electromagnetic fields, let

us suppose to have a system configuration including, at a given time step, two ob-

jects located respectively in cells c1 and c2 of the coarse grid. Thus, we attempt to

approximate the corresponding ‘true’ synthetic measurements (i.e. the numerical

solutions of the Helmholtz model in the presence of both targets simultaneously) by

the vector sum of the electric fields associated with two distinct single-target con-

figurations, namely one in which the first object is located in the coarse cell c1 and

one in which the second object is located in the coarse cell c2. Then, once this addi-

tion has been performed and the background contributions have been subtracted,

the norms of the achieved results are calculated and fed into the MLP network as

real-valued inputs.

A similar approximation is extended to the second input data type, where the (sum-

marised) descent directions computed in the presence of each target individually

are added together.

Note that an advantage of this approximation procedure is that its generalizations

for higher numbers of targets simultaneously included within the domain are straight-

forward to obtain.

Due to the increase in complexity of the multi-object tracking task, we ade-

quately modify the architecture of the network considered by introducing a further

dense layer in the MLP and changing the number of neurons included in the output

layer of both single classifiers. See Figure 6.5. In fact, in the presence of two objects,

the number of possible configurations of the system is given by the binomial coeffi-

cient Cb =
(

Nc

2

)
.
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Figure 6.5: Architecture of the global 2D classifier considered in the pres-
ence of two moving targets. The blocks corresponding to Classifier 1 and
Classifier 2 are highlighted. Their outcomes are combined using prede-
fined fixed rules as described in the text.
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Adopting this new architecture, the accuracy of the previous multi-target ap-

proximation is assessed numerically by performing the simulations discussed be-

low. Considering again the multi-object setup used before, we obtain the results

summarised in Figure 6.6.
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Figure 6.6: Predictions of the classifiers against the real trajectories in a
full view setup considering the multi-target approximation described in
the text. For each time step considered, the true locations of the targets,
which move from left to right, are illustrated by crosses. The highlighted
cells indicate the predictions given by the networks at consecutive time
steps. The stationary background assumed is the result of a prior level
set shape reconstruction as described in the text. Top row from left to
right: Classifier 1 and Classifier 2. Bottom row from left to right: product
and sum rules.

A visual analysis of Figure 6.6 shows a drastic improvement compared to Figure

6.4. Both classifiers, when used individually, achieve full accuracy. Then, the appli-

cation of the fixed rules preserves this high precision without introducing instability.

To confirm the effectiveness of this multi-target approximation, we perform a
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second simulation assuming, however, more complex dynamics. See Figure 6.7.
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Figure 6.7: Predictions of the classifiers against the real trajectories in a
full view setup considering the multi-target approximation described in
the text. For each time step analysed, the true locations of the targets,
which move from the bottom of the domain, are illustrated by crosses.
The highlighted cells indicate the predictions given by the networks at
consecutive time steps. The stationary background assumed is the result
of a prior level set shape reconstruction as described in the text. Top row
from left to right: Classifier 1 and Classifier 2. Bottom row from left to
right: product and sum rules.

A visual analysis of the results illustrated in Figure 6.7 leads to the following ob-

servations. Firstly, Classifier 1 does not perform reliably when the two targets are

both in the central region of the domain. Since that region is the furthest from the

antennas, it is the hardest one to resolve. Additionally, the approximation of sum-

ming the fields corresponding to each object individually is less justified when the

two targets are in close proximity as it neglects the contributions due to their mutual

interaction. Classifier 2 performs overall better. Eventually, the application of the

sum and product rules yields similar results. Although the final accuracy achieved
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is not as high as in the previous example, the method still allows to obtain reason-

able information on the investigated motions.

Recalling that even sophisticated and expensive shape reconstruction techniques

have difficulty in retrieving precise profiles when multiple objects are in close prox-

imity, we conclude that the proposed deep learning classifier, coupled with the multi-

target approximation introduced earlier, constitutes a viable tracking tool. In par-

ticular, the results attained here make us confident that a similar approach can be

useful in practice, where complex scenarios are often addressed.

6.2.3 2D examples in a limited view setup

In this section we evaluate the performance of our deep learning-based classifier in

a limited view antenna configuration.

The presence of antennas outside one single side of the building of interest reduces

the spatial sensitivity of the localization scheme. Moreover, it decreases the amount

of data collected during the measurement process, yielding potentially lower accu-

racy. However, testing limited view setups is essential to understand how the pro-

posed approach might perform in more complex, practical scenarios, where logis-

tical constraints could limit the number or the available locations of the sources.

We briefly specify that the data generation modalities, the approximations consid-

ered and the training procedures employed in this section are analogous to those

discussed in the full view setup. Therefore, for brevity, they are not repeated here.

The following numerical experiment considers a single target moving in the do-

main. An a priori single target assumption is made, i.e. training is realized assum-

ing one only moving object inside the building. The results achieved in this case are

shown in Figure 6.8.
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Figure 6.8: Predictions of the classifiers against the real trajectory in a
limited view setup. For each of the 19 time steps considered, the true lo-
cation of the target is illustrated by a cross. The target moves from left to
right within the building. The highlighted cells indicate the predictions
given by the networks at consecutive time steps. The stationary back-
ground assumed is the result of a prior level set shape reconstruction as
described in the text. Top row from left to right: Classifier 1 and Classi-
fier 2. Bottom row from left to right: product and sum rules.

A visual analysis of Figure 6.8 shows the effectiveness of the combination strat-

egy since the betterment given by the application of the fixed rules is clearly evident.

However, at the same time, it highlights the sensitivity limits of the sensor configu-

ration adopted, which struggles to correctly locate targets far from the antennas.

We conclude the section with the following remarks. The numerical experiments

discussed confirm the efficacy of the proposed data-driven approach in tracking

targets hidden behind walls starting from indirect measurements. In particular, the

method is extremely successful in retrieving information when a single moving ob-

ject is present in both sensor configurations analysed. Although some difficulties

appear when multiple moving objects are considered or when regions far away from
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the antennas are explored, it still manages to provide reasonable predictions. Over-

all, these promising results motivate us to investigate a generalization of this ap-

proach to more realistic 3D domains. This will be described in the next section.

6.3 Target tracking in 3D

In this section we extend the idea of performing deep learning-based target tracking

to 3D setups. The goal is again to localize the positions and follow the trajectories of

moving objects in almost real-time, starting from through-the-wall measurements

for surveillance purposes. We clearly state that the results presented in this section

have been partially included in our previous work [230].

So far, we have considered a 2D through-the-wall model, which, although sim-

ple and computationally efficient, should be interpreted as a proof-of-concept tool

for testing ideas and algorithms before applying them to more challenging scenar-

ios. In this section, we adopt instead the Maxwell’s solver introduced in Chapter 2 to

approximate synthetically the field measurements associated with specific system

configurations. This operation is necessary to overcome the lack of experimental

data as already mentioned.

Inspired by the results attained in 2D, a combination of independent neural net-

works is investigated next. However, taking into account the increased complexity

associated with 3D domains and the simultaneous need for almost real-time esti-

mates, we specialize our data-driven approach as follows. Firstly, we select a suit-

able network architecture in order to reduce the associated computational costs.

Secondly, we adopt a setup that is a trade-off between the desire to consider a real-

istic scenario and the attempt to reduce its numerical requirements. For this reason,

no stationary (background) objects are here considered, although their recovery by

means of shape reconstruction techniques can in principle be realized according to

what discussed in Chapter 2.

6.3.1 3D data-driven tracking

The 3D tracking procedure here developed relies on a combination of classifiers. Ac-

cording to [222], the main advantage of this combination is that multiple networks
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might include complementary information and boost the overall localization capa-

bility.

However, since the computation of the gradient of the cost functional (2.73) (i.e. of

the associated descent direction) is highly expensive, the architecture of the net-

work employed in 3D differs from the structure adopted in the previous section.

Namely, only MLP networks are considered. However, inspired again by model bag-

ging strategies, a combination of independent classifiers is assumed and their pre-

dictions are eventually combined through the application of fixed rules.

Although sharing the same architecture, the independence of these MLPs is ensured

by training each of them on a different data set. This is practically realized by con-

sidering three independent sets of (source) antennas distributed around the lateral

walls of the building of interest but at different locations. The corresponding fields

are evaluated by a set of receivers, which is common to all groups of sources.

Further details are provided hereafter. Although we have anticipated that the

input data is given by direct field measurements, a few clarifications are necessary.

Similarly to what noted in 2D, numerical experiments show that the performance

of the classifiers can be improved by subtracting from the measurements the con-

tributions of the stationary background only (i.e. the contributions measured in the

absence of moving targets). Therefore, performing this subtraction, the norms of

the resulting complex values are computed and fed into the networks as real-valued

inputs. Notice that this approach is in line with the general idea of splitting the

overall tracking procedure into two steps: recovery of the stationary background;

localization of the moving objects.

Data is given by a sequence of consecutively collected through-the-wall measure-

ments, each corresponding to a specific system configuration. Analogously to the

2D case, each time step is treated singularly and independently from the others, and

no a priori dynamic assumptions are adopted.

As shown in Figure 6.9, each single classifier is defined as a MLP network de-

scribed according to Equation (6.1). A ReLu activation function is considered for

all hidden layers, but a softmax activation is adopted for the output one. Due to

the nature of the classification problem addressed, a categorical cross-entropy loss

function is chosen and progressively reduced while training according to the Adam
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algorithm. Batch normalization layers, dropout layers and data augmentation tech-

niques are also applied.
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Figure 6.9: Architecture of the global 3D classifier considered. The
blocks corresponding to each MLP classifier are highlighted. Their out-
comes are combined using a predefined fixed rule as described in the
text.
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We end the section by briefly specifying the fixed rules adopted to combine the

estimates provided by each MLP considering a straightforward generalization of

Equation (6.8).

Mathematically, let y 1, y 2, y 3 ∈ RK be the (softmax) outcomes of the three MLPs.

Then, the combined prediction ỹ ∈RK is computed as follows:ỹi = y1,i y2,i y3,i
Np

, with the product rule,

ỹi = y1,i+y2,i+y3,i
Ns

, with the sum rule,
(6.8)

where i = 1, ...,K and Np , Ns are normalization factors. Eventually, the location esti-

mated for the target is the k-th cell, where

ỹk = max
j∈[1,K ]

ỹ j . (6.9)

6.3.2 3D numerical examples

The performance of the 3D data-driven tracking scheme introduced is evaluated by

running numerical experiments as discussed below.

We start by describing the setup adopted, which is a trade-off between the desire to

consider a realistic scenario and the necessity of limiting the computational costs.

We schematize a domain with dimension 21.5m×21.5m×21.5m using a 3D grid con-

taining 43×43×43 cubic voxels, each with edge length equal to l = 0.5m. In this way,

we model a building with size 7.5m× 7.5m× 7.5m by specifying its external walls.

Each wall has a thickness of 0.5m and an electrical conductivity of σw all = 0.03S/m.

A single target with a conductivity value of σt g = 1.0S/m is considered inside the

domain for generating the training and test data. The other electromagnetic pa-

rameters are fixed to the following background values: µ = µ0 = 4π× 10−7H/m,

ε= ε0 = 8.85×10−12F/m, σbg = 0.01S/m.

All antennas are located just outside the lateral sides of the building but not on top

or beneath it. These sources are divided into three groups, each of which includes

18 elements, whereas 144 receivers are considered. See Figure 6.10. All antennas

operate at a unique frequency, namely f = 100kHz.
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Figure 6.10: Configurations of the three sets of sources used to col-
lect data. The sources outside the building walls orthogonal to the x-
direction are shown. Analogous source configurations are chosen out-
side the walls orthogonal to the y-direction. No sources are located in
correspondence of the walls orthogonal to the z-direction.

A coarse grid is introduced to divide the region inside the building walls into

Nc = 125 cubic cells, each of which containing 3×3×3 voxels. This is used to specify

the position of a generic target by identifying the coarse grid cell in which it is con-

tained at a given time.

Furthermore, we briefly mention that the creation of the data sets and the imple-

mentation of the networks are realized in a similar way to that described in the 2D

case. Hence, they are not repeated here.

The performance of the 3D deep learning-based classifier is evaluated by run-

ning numerical experiments. The first simulation considered aims to follow the mo-

tion of a single target whose trajectory is illustrated in Figure 6.11.



190 CHAPTER 6. DATA-DRIVEN TARGET TRACKING FOR TWRI APPLICATIONS

x0 2 4 6 8 10 12 14 16
y

0
2

4
6

8
10

12
14

16

z

0
2
4
6
8
10
12
14
16

time step t:
t=1
t=2
t=3
t=4
t=5
t=6,7
t=8
t=9
t=10
t=11
t=12
t=13

Figure 6.11: 3D trajectory described by a moving target. For each time
step, the coarse grid cell containing the target is highlighted. The walls
of the building are not illustrated for clarity.

The associated estimations given by our tracking procedure are displayed in Fig-

ure 6.12.
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Figure 6.12: To the left: estimations attained considering each group of
sources singularly. To the right: estimations attained by combining clas-
sifiers considering both the product and the sum rules. For each time
step, the centre of the predicted cell is highlighted and compared with
the true trajectory shown in red.

Although the predictions of each single classifier provide reasonable indications
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of the investigated trajectory, a few errors occur. Since different MLPs make mis-

takes of different nature, their combination is expected to improve the overall accu-

racy of the method [223]. This is confirmed by the plot on the right in Figure 6.12.

Repeating the same procedure for a different target trajectory leads to analogous

conclusions. See Figure 6.13.
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Figure 6.13: To the left: estimations attained considering each group of
sources singularly. To the right: estimations attained by combining clas-
sifiers considering both the product and the sum rules. For each time
step, the centre of the predicted cell is highlighted and compared to the
true trajectory shown in red.

A visual analysis of the previous examples clearly highlights the effectiveness of

the tracking scheme here investigated. However, a natural question that arises is

whether the improvement in accuracy reached is actually due to the combination

strategy or simply a consequence of the increased number of sources considered.

To clarify this aspect, we use the superimposition principle valid for electromag-

netic fields to combine all the measurements associated with different source groups.

This enhanced data is then used to train a single MLP having the same architecture

as those outlined above. Numerical experiments show that this network, when ap-

plied to the previous example trajectories, achieves comparable performance with

that of the single MLPs trained on each group of measures. Therefore, this confirms

that it is not the simple increase of the number of sources considered but the com-

bination of independent information that improves the estimation.
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6.3.3 A Kalman Filter-based tracking extension

The deep learning-based tracking procedure considered so far does not require a

priori dynamic knowledge. As already discussed, this is an advantage when such

prior information is not accessible. However, we recognize that there might be ap-

plications where a dynamic model for the expected motion is available. Thus, incor-

porating such a model could be beneficial to improve the accuracy of the method.

For these cases, we propose a possible extension of the previous tracking scheme

in which we introduce a post-processing step based on the application of a Kalman

filter [39]. This generalization is inspired by our previous work [40], where a similar

Bayesian filter is employed, albeit in a different context, for tracking applications

based on indirect measurements.

According to Chapter 5, the use of a Kalman filter requires a dynamic model

for the expected motion. In the following proof-of-concept example, we refer to a

simple Continuous White Noise Acceleration (CWNA) model [179] (i.e. an almost

constant velocity model) describing an object moving inside the building along its

main diagonal. Notice that this motion is only an approximation of the true trajec-

tory followed.

The target (position) measurements are given by the outcomes of a MLP classifier

trained on the data associated with a single group of sources (i.e. 18 sources in to-

tal) as before. Eventually, the results of this enhanced procedure are summarised in

Figure 6.14.
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Figure 6.14: A post-processing step based on a Kalman filter is consid-
ered to account for a priori dynamic knowledge. The outcomes of the
MLP network, the results of the Kalman filter and the true trajectory are
illustrated in green, blue and red respectively.

According to Figure 6.14, the application of this post-processing step helps counter

the effects of erroneous MLP estimations. The results attained make us confident

that a similar approach could work reliably even in more realistic situations, where,

for example, multiple targets are present or more complicated motions occur.

6.4 Summary of the chapter

In this chapter, we introduced innovative hybrid data-driven solutions for through-

the-wall target tracking problems based on deep learning but further boosted by in-

corporating readily available information derived from the inverse problem theory.

The core idea was to map the measurements directly to the target locations with-

out solving the underlying scattering problem through the formulation of a suitable

classification task. To the best of the author’s knowledge, this analysis represents

the first application of a model bagging inspired, deep learning-based technique

for through-the-wall tracking. Also, it contributes to enrich the limited literature
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currently available that focuses on accounting inverse problem concepts when de-

veloping deep learning architectures. The applicability of this approach was evalu-

ated by realizing numerical experiments in 2D and 3D using different antenna con-

figurations. Eventually, a possible Bayesian extension was proposed to incorporate

dynamic information available a priori.



Chapter 7

TWRI multi-parameter

reconstructions and tracking

In this chapter we investigate the possibility of recovering multiple unknown pa-

rameters simultaneously starting from through-the-wall data. We mostly refer to

the 2D setup introduced in Chapter 3. However, instead of considering the scatter-

ing relative permittivity profile as the only unknown, we generalize our reconstruc-

tion procedures by simultaneously retrieving a second unknown parameter, namely

the conductivity profile.

The concurrent estimation of multiple parameters often comes with additional com-

plications. For example, the increase in the number of unknowns that need to be es-

timated from the data might render the underlying inverse problems more underde-

termined. Also, compensation effects might appear between different electromag-

netic parameters making the solution of the system configuration more challenging.

Nevertheless, extensions of the algorithms introduced in the previous chapters can

be derived and employed to retrieve information on the targets of interest.

Estimating multiple properties by solving inverse problems is a challenging math-

ematical task that arises in several applications [231], [232]. Considering electro-

magnetic scattering problems, prior work focussed on the simultaneous reconstruc-

tion of the permittivity and conductivity profiles starting from experimental data is

discussed in [233].

In this chapter, we begin by focussing on the characterization of stationary objects

included inside a building, starting from a set of measurements collected by de-

ploying antennas around its walls. Both adjoint pixel-based methods and level set

195
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shape reconstruction schemes are analysed. Then, with this multi-parameter target

schematization, we evaluate the possibility of extending the deep learning-based

approach introduced in Chapter 6 to track moving objects in almost real-time.

7.1 2D inverse scattering problem with multiple unknown

parameters

In this section, we generalise the theory discussed in Chapter 3 in order to simul-

taneously reconstruct the permittivity and conductivity unknown profiles by first

formulating and then solving an electromagnetic inverse scattering problem.

Let us begin by recalling the Helmholtz equation:

∇2u j k + [ak (εb +εs)+ i bk (σb +σs)]u j k = q j , (7.1)

where u j k denotes a component of the electric field generated by the j -th source

operating at frequency fk . Compactly, Equation (7.1) can be written as:

∇2u j k (x)+ [κb(x)+κs(x)]u j k (x) = q j (x), (7.2)

with x ∈Ω,Ω=R2, and where the subscripts b and s stand for background and scat-

tering components respectively. Analogously to Chapter 3, we supplement Equa-

tion (7.2) with the Sommerfeld radiation condition (3.4) as boundary condition at

infinity.

Notice that the unknowns of the problem, namely the scattering permittivity εs and

the scattering conductivity σs , can be combined into a single complex-valued pa-

rameter κs as follows:

κs = aεs + i bσs , (7.3)

with a =ω2µ0ε0 and b =ωµ0.

Following Chapter 3, the identification of targets of interest is here rewritten in

terms of a scattering inverse problem whose mathematical formulation is briefly
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outlined next. Let us introduce the following parameter function space:

F :=
{
κs :Ω→C,

∫
Ω
|κs(x)|2dx <∞

}
, (7.4)

equipped with the inner product:

〈κs1,κs2〉F =
∫
Ω
κs1(x)κ̄s2(x)dx. (7.5)

Also, let us recall definitions (3.17), (3.19), and (3.21). Then, by introducing a resid-

ual operator R j k : F → Z j equivalently to Equation (3.24), we can formulate the ad-

dressed inverse problem as the task of determining a profile κ̃s ∈ F such that:

R j k (κ̃s) = 0, (7.6)

with j = 1, ..., p, k = 1, ...,K .

Hence, a Newton’s solution of Equation (7.6) leads to an iterative update formula

for the unknown parameter of the type: κs → κs +δκs , with δκs =−R ′
j k (κs)∗R j k (κs).

The notation here adopted follows closely that of Chapter 3. An explicit computa-

tion of this update can be made using the following theorem.

Theorem 7.1.1. Let ζ = (ζ j 1, ...,ζ j m j )T ∈ Z j be a given set of measurements and let

x j d , d = 1, ..,m j , be the detector positions corresponding to a source q j ∈ Y . Then, the

action of the adjoint operator R ′
j k (κs)∗ on ζ is given by

R ′
j k (κs)∗ζ=−u j k z j k , (7.7)

where u j k solves:

∇2u j k +κk u j k = q j , (7.8)

and z j k solves the ‘adjoint equation’:

∇2z j k +κk z j k =
m j∑

d=1
ζdδ(x−x j d ) (7.9)

with κk = κb,k +κs,k .

A proof of Theorem 7.1.1 can be easily derived by generalizing the correspond-

ing one given in Chapter 3.
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A level set shape reconstruction algorithm for multiple unknown parameters is

briefly outlined hereafter. Let us begin by considering the profile:

κ(x) =
κ̂ if x ∈ D,

κb(x) if x ∈Ω\ D,
(7.10)

where D ⊂ Ω defines a given target with κ̂ ∈ C. Then, recalling definition (3.64), a

level set representation of this profile can be written as follows:

Λ : Φ→ F, Λ(φ)(x) = κs(x) =
κ̂−κb(x) if φ(x) ≤ 0,

0 if φ(x) > 0,
(7.11)

where φ ∈Φ is a level set function such that:φ(x) ≤ 0 if x ∈ D,

φ(x) > 0 if x ∈Ω\ D.
(7.12)

Thus, by introducing a residual operator T j k : Φ→ Z j , T j k (φ) = R j k (Λ(φ)), the shape

reconstruction problem can be reformulated as the task of determining a level set

function φ̃ ∈Φ such that:

T j k (φ̃) = 0, (7.13)

with j = 1, ..., p, k = 1, ...,K .

Again, a Newton’s iterative solution of Equation (7.13) yields an update of the type:

φ→ φ+δφ, where δφ = −T ′
j k (φ)∗T j k (φ). By generalizing the derivation presented

in Chapter 3, an explicit computation of this update yields:

δφ=−(κ̂−κb)
1

|∇φ|Cρ(Γ)χBρ(Γ)u j k z j k , (7.14)

where Γ denotes the boundary Γ= ∂D(φ).

We conclude this section by specifying that the reconstruction techniques out-

lined above can be implemented numerically by extending Algorithms 4 and 5. Ad-

ditionally, in our simulations, a gradient projection regularization and a diffusion

regularization are respectively incorporated to promote numerical stability.
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7.1.1 Numerical results

In this section, the performance of the previous reconstruction schemes is tested by

realizing numerical experiments.

We start by specifying that the 2D setup here adopted is analogous to the one con-

sidered in Chapter 3. Namely, a building of 7m×3m is schematized using a grid with

pixel size of 2cm×2cm. A set of 178 sources and 174 receivers is deployed around

the outer walls of this building. These antennas operate at the following frequency

values: f = {50,75,100,125,150,175}MHz. The background parameters are chosen

as follows: εb = 1.0, σb = 0.01S/m. Each wall has a thickness of 10cm, a relative

permittivity equal to εw all = 2.0, and a conductivity of σw all = 0.03S/m. The target

parameters are instead set to the following values: εt g = 6.0 and σt g = 0.1S/m.

The first experiment considered aims to recover the permittivity and conductiv-

ity profiles within the domain using an AFM algorithm. The evolution of this recon-

struction is summarised in Figure 7.1.
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Figure 7.1: Reconstruction of the permittivity profile using an AFM with
two unknown parameters. The true setup considered and the initial pro-
file assumed are shown in the top row. The estimations achieved after 5,
10, 20 and 50 iterations are displayed next.
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Figure 7.2: Reconstruction of the conductivity profile using an AFM with
two unknown parameters. The true setup considered and the initial pro-
file assumed are shown in the top row. The estimations achieved after 5,
10, 20 and 50 iterations are displayed next.

The starting point of this simulation is the empty building. As the algorithm

proceeds, contributions in the vicinity of the true locations of the targets emerge

clearly despite the formation of some artefacts close to the outer walls. However,

note that the importance of these artefacts decreases as the number of iterations re-

alized increases. This is particularly evident in Figure 7.2. Eventually, the simulation

is stopped after 50 sweeps, and the outcomes attained not only identify the pres-

ence of two targets, but also provide a rough estimate of their locations. However,

analogously to what was highlighted in Chapter 3, this AFM scheme is not able to



202 CHAPTER 7. TWRI MULTI-PARAMETER RECONSTRUCTIONS

accurately retrieve the magnitude of the permittivity and conductivity of the targets.

The evolution of the corresponding cost functional, whose definition is a straight-

forward generalization of Equation (3.26), is shown in Figure 7.3. While overall de-

creasing, this curve displays temporary increases and some irregularities. However,

this is in line with our expectations since the line search procedure adopted does

not enforce the reduction of the cost value at every iteration.
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Figure 7.3: Cost trend against the sweep number for the AFM simulation
described in the text.

The results of a similar level set shape reconstruction are discussed next. Re-

ferring to the same setup, a single level set function is considered to represent the

shape of all targets included inside the building. The initial guess adopted contains

three seeds. Among them, one is a clear artefact used to assess the robustness of the

method. The others are instead located near the true object positions. According

to Figures 7.4 and 7.5, at the beginning of the reconstruction, the algorithm rapidly

eliminates the artefact included in the starting guess. Then, the shape of the target

in the right half of the domain, i.e. the one nearest to the antennas, is progressively

enlarged and becomes closer and closer to the true one. Additionally, although at a

slower rate, the shape of the object located in the left room is also modified until a

good estimation of the true profile is reached. When no perceptible modifications

of the shapes occur at consecutive iterations, i.e. after 50 sweeps, the procedure is

stopped. Notice that the evolutions displayed in Figures 7.4 and 7.5 coincide since
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a single level set function is used to characterize both the permittivity and conduc-

tivity configurations.
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Figure 7.4: Level set shape reconstruction of the permittivity profile. The
true setup considered and the initial profile assumed are shown in the
top row. The estimations achieved after 2, 10, 20 and 50 iterations are
displayed next.
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Figure 7.5: Level set shape reconstruction of the conductivity profile.
The true setup considered and the initial profile assumed are shown in
the top row. The estimations achieved after 2, 10, 20 and 50 iterations
are displayed next.

For completeness, the associated evolution of the cost trend against the sweep

number is illustrated in Figure 7.6. The smooth, decreasing curve obtained confirms

the stability of the reconstruction procedure. In accordance with the observations

discussed in Chapter 3, in the beginning, we have a rapid reduction of the cost that

is most likely due to the disappearance of the artefact incorrectly included in the ini-

tial guess. Afterwards, the cost value continues to diminish due to the modification

of the remaining shapes until a plateau is reached. Hence, the simulation is ended.
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Figure 7.6: Cost trend against the sweep number for the level set shape
reconstruction described in the text.

We highlight here that the previous reconstruction has been realized assuming

to know the exact values of the target relative permittivity and conductivity. Al-

though this is a strict hypothesis, analogously to what was discussed in Chapter 2,

it can be partially relaxed. In fact, an approximation of these parameters is suffi-

cient to attain good estimations. Figure 7.7 illustrates the final profiles obtained

by repeating the previous level set reconstruction assuming however inexact object

permittivity and conductivity values.
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Figure 7.7: Final shapes attained by using different estimated values of
the target relative permittivity and conductivity. Top row from left to
right: εt g = 7.0 and σt g = 0.08S/m, εt g = 6.0 and σt g = 0.06S/m; Bottom
row from left to right: εt g = 7.0 and σt g = 0.16S/m, εt g = 6.0 and σt g =
0.10S/m.

A visual analysis of Figure 7.7 highlights that, although small differences are

present, the estimated shapes are similar. In particular, each experiment is able

to eliminate the presence of the artefact mistakenly included in the initial guess

adopted and provides information on the target positions and dimensions.

Although different parameter choices yield similar estimated profiles, they lead

to differences in the value of the total cost attained eventually. See Figure 7.8.
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Figure 7.8: Final cost obtained by performing level set reconstructions
with different estimated values of the target relative permittivity and
conductivity.

A visual analysis of Figure 7.8 shows that incorrect estimations of the conductiv-

ity have a more significant effect on the cost value than inexact permittivity approx-

imations in the explored region. A local minimum is not clearly identifiable. Thus,

an accurate estimation of the target properties through a generalization of the sam-

pling procedure introduced in Chapter 3 is problematic.

7.2 Data-driven target tracking

In this section, we investigate whether the deep learning-based tracking approach

introduced in Chapter 6 can be extended to multi-parameter representations of the

targets of interest. In other words, in Chapter 6 we schematized the targets by con-

sidering only their permittivity value different from the background one. Here, in-

stead, we model the targets as objects with both permittivity and conductivity dif-

ferent from the corresponding background values.
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Specifying a target by considering multiple parameters does not directly affect

the tracking data-driven procedure. However, multiple unknowns might result in

compensation effects in the data that make the resolution of distinct configurations

more difficult. Furthermore, a larger amount of data might be necessary to effec-

tively train the classifier network due to the increase in the variability of the mea-

surements.

In the following, an analysis of the accuracy of our deep learning-based track-

ing scheme is discussed in a multi-parameter framework. We begin by specifying

that the training procedures adopted, the approximations realized, the network ar-

chitectures chosen and the numerical implementation modalities considered here

follow closely what was described in Chapter 6. However, for simplicity, the back-

ground environment assumed is the empty building, i.e. no stationary objects are

included.

The first numerical experiment considered aims to recover the trajectory of a

moving target as shown in Figure 7.9. We briefly recall that the objective is to cor-

rectly identify the coarse grid cell that contains the object at a given time. Also, each

step is analysed singularly and independently of the others, without incorporating

a priori dynamic assumptions.

As for the training data set, we synthetically generate field measurements corre-

sponding to elliptical objects singularly included inside the building. These ob-

jects have a relative permittivity randomly chosen in the range εt g ∈ [5.0,8.0] and

a conductivity value randomly selected in the interval σt g ∈ [0.08,0.12]S/m. A sim-

ilar procedure is employed to numerically create a test data set by moving a single

cross-shaped target within the domain.

The associated estimations given by the MLP (i.e. Classifier 1) and CNN (i.e. Clas-

sifier 2) networks, together with the outcomes of the application of the product and

sum rules, are shown in Figure 7.9.
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Figure 7.9: Predictions of the classifiers against the real trajectory in a full
view setup. For each of the 19 time steps considered, the true location of
the target is illustrated by a cross, which moves from left to right within
the building. The highlighted cells indicate the predictions given by the
networks at consecutive time steps. Top row from left to right: Classifier
1 and Classifier 2. Bottom row from left to right: product and sum rules.

Figure 7.9 confirms the results achieved in the analogous experiment discussed

in Chapter 6. Each classifier, when applied individually, provides a good estimation

of the target trajectory although a few errors are included. Merging independent

information through the fixed rule procedures seems beneficial and leads to an ac-

curacy improvement.

The second experiment studied addresses a multi-target situation. Here, we

adopt again the approximation of creating a multi-target data set starting only from

single-target measurements. This yields the results illustrated in Figure 7.10.
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Figure 7.10: Predictions of the classifiers against the real trajectories in
a full view setup. For each time step considered, the true locations of
the targets, which move from left to right, are illustrated by crosses. The
highlighted cells indicate the predictions given by the networks at con-
secutive time steps. Top row from left to right: Classifier 1 and Classifier
2. Bottom row from left to right: product and sum rules.

According to Figure 7.10, each classifier is able to reach full accuracy. Again,

these outcomes agree with the results of the corresponding experiment discussed

in Chapter 6 and confirm the applicability of the multi-target approximation in a

setup with multiple unknown parameters.

The last numerical simulation considered extends this multi-parameter analysis

to a 3D configuration. We briefly recall that the tracking problem is firstly rewritten

as a classification task, which is then addressed by employing a multi-input network

given by the combination of three independent MLPs.

The training data set is generated by including within the 3D building schema-

tized a single target with relative permittivity equal to εt g = 10.0 and conductiv-

ity of σt g = 1.0S/m. Notice that both of these parameters are different from the
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corresponding background values, namely εbg = 1.0 and σbg = 0.01S/m. The 3D

setup adopted resembles closely the one introduced in Chapter 6. Here, three sets

of sources, each including 18 antennas, are deployed around the later walls of the

building. All antennas operate at the frequency: f = 100kHz.

Eventually, the trajectory estimates attained in this example are displayed in Figure

7.11.
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Figure 7.11: 3D target tracking. To the left: estimations attained con-
sidering each group of sources singularly. To the right: estimations at-
tained by combining classifiers considering both the product and the
sum rules. For each time step, the centre of the predicted cell is high-
lighted and compared to the true trajectory shown in red.

According to Figure 7.11, each classifier, when applied singularly, is able to pro-

vide a rough approximation only of the investigated trajectory. However, merging

the predictions given by independent networks yields a significant improvement,

resulting in a good estimate of the motion analysed.

7.3 Summary of the chapter

In this chapter, we presented extensions of the reconstruction schemes introduced

in the previous chapters aimed at retrieving concurrently estimates of conductivity

and permittivity unknown profiles from through-the-wall data. In particular, we be-

gan by generalizing the formulation of the underlying inverse scattering problem in

reference to both adjoint pixel-based reconstructions and level set shape methods.

A 2D proof-of-concept analysis was proposed and a 3D extension was suggested as
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a possible future research direction. In addition, multi-parameter generalizations

of the sampling procedure and the data-driven tracking approach introduced in the

previous chapters were discussed.



Chapter 8

Conclusions and Future Research

8.1 Summary and conclusions

The focus of this PhD is the development of algorithms for localizing, identifying

and tracking targets of interest hidden inside a building for surveillance applica-

tions. Starting from through-the-wall measurements, the goal is to recognize the

presence of objects that might pose a security threat and, if moving targets are present,

follow their motions to identify possible hostile or criminal activities. Therefore,

these studies might be helpful to assist the activities of police forces and rescue

teams in security and salvage operations by preventing them from entering poten-

tially dangerous buildings blindly.

In the beginning, we focussed on characterizing stationary objects in 3D do-

mains starting from through-the-wall measurements collected by deploying anten-

nas around the lateral sides of an investigated building. Thus, a model based on

Maxwell’s equations was employed to numerically approximate the propagation of

the electromagnetic fields generated by these antennas for specific system configu-

rations. In particular, this model was used to generate synthetic data necessary to

overcome the lack of experimental measurements associated with this PhD project.

Additionally, it played a key role in the implementation of the reconstruction tech-

niques analyzed to identify objects hidden behind walls.

The identification of the targets was formulated as an inverse scattering problem

whose solution was realized by considering a combination of adjoint pixel-based

and shape reconstruction methods. In agreement with the existing literature, our

213
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numerical experiments confirmed the ability of the adjoint schemes to rapidly re-

trieve rough estimates of the target locations. At the same time, level set-based

shape reconstructions were proven successful in recovering accurate approxima-

tions of their geometry.

Inspired by the previous 3D results and motivated by the attempt of reducing the

computational costs of the reconstructions, a simplified 2D forward model based on

the Helmholtz equation was introduced next. Due to its high numerical efficiency,

this proof-of-concept model was used to investigate the possibility of generalizing

the formulation of the underlying inverse scattering problem by considering as un-

knowns some of the physical properties of the targets.

Furthermore, this model was employed to examine the possibility of performing

reconstructions using a parametric level set-based representation of the domain.

Since the solution of the inverse scattering problem was reduced to a minimization

task, the reduction of the dimensionality of the problem provided by the paramet-

ric representation allowed the adoption of higher than linear-order optimization

algorithms, potentially yielding faster reconstructions. Hence, assuming a stochas-

tic framework to reduce the computational requirements associated with the large

amounts of data usually collected when considering antennas operating at multiple

frequencies, we presented a comparison between first-order and quasi-Newton al-

gorithms for stochastic shape optimization problems aimed at identifying and char-

acterizing targets hidden behind walls.

The task of following the trajectories of moving targets from indirect observa-

tions, i.e. through-the-wall measurements, was tackled next. A combination of

regularization techniques for non-linear inverse problems and Bayesian statistical

inference was considered to retrieve the unknown trajectories assuming that a kine-

matic model for the expected motion was available a priori. Consequently, the at-

tempt to relax the previous assumption motivated the introduction of hybrid data-

driven tracking approaches based on combinations of neural networks. The main

idea explored consisted of rewriting the problem of localizing the objects as a classi-

fication task, for which specific multi-input architectures including multi-layer per-

ceptrons and convolutional neural networks were applied. Positive results were ob-

tained by testing different antenna configurations in single and multi-target setups.
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The investigations carried out in this thesis contribute to providing better an-

swers to the problems of localizing, characterizing and tracking targets of interest

hidden behind walls. However, although this thesis comes to an end, the research

on TWRI can be considered anything but concluded. Further studies are necessary

to provide more comprehensive answers for real-world applications and relax some

of the hypotheses we assumed. Nevertheless, we are confident that the results ob-

tained here will help advance this research field and constitute a valuable starting

point for possible future work and extensions.

Although we began by considering already existing reconstruction techniques

developed for electromagnetic inverse problems, we put efforts in specifying them

according to the requirements of our applications, improving their accuracy and

performance by adopting tailor-made regularizations and parametric domain rep-

resentations, and providing the reader with detailed mathematical descriptions of

the underlying problems. Additionally, we focused on specific aspects that are not

extensively discussed in the existing literature, filling some small gaps at least par-

tially. For example, the adoption of a parametric level set description of the un-

known parameter profiles, besides being a relatively little investigated topic, was

driven by the idea of performing stochastic shape reconstructions using higher than

linear-order optimization algorithms. The author hopes that the results presented

here will increase the interest of other researchers in pursuing similar analyses in

different inverse problem-based contexts, especially as high-order optimization is

becoming a popular research objective in the growing deep learning community.

As specified throughout this thesis, the evaluation of the performance of the al-

gorithms introduced was realized on synthetic data only. We recognize that the lack

of experimental measurements might constitute a limitation to understand how re-

liably these methods could perform in real-world scenarios. However, we always

tried to counter the previous drawback by making our experiments as realistic as

possible. For example, we added random perturbations to the synthetic data to

simulate the presence of noise inherently included in any measurement process,

adopted diverse domain representations to reduce the inverse-crime, and selected

the values of the electromagnetic parameters according to the guidelines provided

in TWRI reviews.
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These considerations bring us to another important aspect of our research: balanc-

ing the realism of the simulated setups with the corresponding computational re-

quirements. For example, constraints in the available numerical resources limited

the maximum number of voxels that could be modelled in our 3D experiments and,

in principle, could introduce severe restrictions when real-time tasks are addressed.

Although the constant development of more and more powerful processors helps

attenuate this issue, more could be done. As vastly discussed in the literature, faster

solutions can be achieved by adopting linear approximations of the underlying in-

verse problem. However, neglecting the inherent non-linear nature of the scattering

problem often results in an accuracy reduction and less robust estimates. Therefore,

in our opinion, a more promising research direction is developing more efficient nu-

merical forward solvers able to rapidly and reliably approximate wave propagation

phenomena. However, this is beyond the main objectives of our research.

We discussed why tracking moving objects starting from through-the-wall data

is a difficult task to address and provided two conceptually different approaches

to tackle it. The positive results obtained by combining adjoint-based reconstruc-

tions equipped with a sparsity regularization and a Kalman filter confirmed the out-

comes of previous studies in which signal processing techniques had been paired

with Bayesian filters to solve similar problems.

However, we believe that the application of hybrid deep learning-based models to

TWRI tracking represents a more innovative contribution since, so far, data-driven

tracking has mostly been explored in reference to image sequences or video appli-

cations. Although a few prior studies investigated the capability of machine learn-

ing methods to identify and recognize objects or sources of radiation starting from

scattered data, to the best of the author’s knowledge, our approach is the first ap-

plication of multi-input deep classifiers to almost real-time TWRI target tracking.

Additionally, this study contributes to enrich the limited literature currently avail-

able that focuses on accounting inverse problem concepts when developing deep

learning-based models.
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8.2 Future research

We conclude the chapter with some comments on promising research directions

that might be pursued to continue the investigation carried out in this thesis.

We begin by briefly mentioning some natural extensions that are easily identifiable.

For example, it could be interesting to analyze the potential benefit associated with

a multi-frequency generalization of the data-driven approach proposed for target

tracking. In fact, in our case, all neural networks considered were trained using data

collected at a single frequency, while the inverse problem-based reconstructions

were realized considering multiple frequencies. Although this increases the com-

plexity of the problem and might require a modification of the architecture of the

networks or an extension of the training processes, it might help better resolve dif-

ferent system configurations improving the overall tracking performance.

Furthermore, motivated by the positive results obtained in 2D, 3D extensions of the

parametric level set-based analysis and multi-parameter reconstructions could be

investigated.

A direct extension of the level set algorithms proposed in this thesis consists of

evolving concurrently multiple level set functions to characterize objects having dif-

ferent physical parameters. Note that this idea is conceptually different from the

approach proposed in Chapter 4, where two independent functions were employed

to represent the stationary background and the moving targets respectively, since

they were modified sequentially and individually. This generalization is often re-

ferred to as a colour level set representation of the domain and has been recently

applied to characterize the content of shielded containers starting from near-field

electromagnetic data [124]. Therefore, we believe that a similar extension could also

be successful in TWRI problems.

From a practical point of view, it might be beneficial to realize sensitivity studies

aimed at reducing the number of antennas necessary to reach a reasonable accu-

racy level of the target estimates. This would help make the proposed procedures

more portable, easier to deploy, less expensive and more robust with respect to lo-

gistical constraints often present in practice.

The multi-input neural networks adopted for tracking moving objects involve

multi-layer perceptrons. We specified before that the inputs fed to these networks
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were given by the norms of the electric fields measured at the receivers after the

subtraction of the contributions of the known background. Due to the nature of the

forward models used to numerically approximate the propagation of the electro-

magnetic waves, these measurements were provided as complex-valued data. Thus,

we turned them into real-valued inputs by computing their norms. In other words,

only the magnitudes of these measurements were learned while the corresponding

phases were neglected. Therefore, a possible improvement might be achieved by

considering both of these types of information while training the data-driven clas-

sifiers. However, the main difficulty is to take into account the correlation between

each magnitude value and the corresponding phase. In our opinion, a promising

research direction is the adoption of complex-valued neural networks. However,

although some work has been done in this direction recently [234], [235], their im-

plementation poses several challenges and is at an early stage.

In Chapter 6, the recovery of the trajectories of the moving objects was realized

by identifying their positions at a given time step independently of the other time

steps. This choice was made to avoid introducing a priori assumptions on the ex-

pected dynamics and formulate the localization problem as a classification task.

However, an alternative approach could be investigated. The general idea is to in-

corporate time correlations between consecutive measurements since, in many ap-

plications, the unknown motions are expected to be continuous over time. As ex-

tensively discussed in the literature, recurrent neural networks represent suitable

architectures to add into account contextual information. Assuming to be given

a set of through-the-wall measurements collected at consecutive time steps, each

corresponding to a target trajectory, one could attempt to learn these dynamics us-

ing, for example, Long Short-Term Memory (LSTM) cells. Therefore, when a new set

of sequential measurements is given, the associated trajectory might be estimated

directly by feeding this data to the previous network.



Chapter 9

Appendix

9.1 Appendix: Analytical solution of Maxwell’s equations

In this appendix a detailed derivation of the analytical expressions of the electric

and magnetic fields generated by a magnetic point dipole source is provided in a 3D

homogeneous space following closely [45].

We adopt the so-called Schelkunoff potential description that consists of discom-

posing the fields as the sum of distinct electric and magnetic contributions:

E = E m +E e , (9.1)

H = H m +H e , (9.2)

and, when applied to Equation (2.9), yields the following relations:

∇×E m = J m −aH m , (9.3)

∇×H m = bE m , (9.4)

∇×E e =−aH e , (9.5)

∇×H e = J e +bE e . (9.6)

Since the computation of the divergence of Equations (9.4) and (9.5) provides null

results, the fields E m and H e can be conveniently considered as the curls of vector

potentials F , A as follows:

E m =−∇×F , (9.7)

219
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H e =∇× A, (9.8)

where the choices of the signs are arbitrary. Thus, from Equations (9.4) and (9.5),

the other field components can also be expressed in terms of the vector potentials

as shown below:

H m =−bF −∇U , (9.9)

E e =−a A −∇V , (9.10)

where U and V are arbitrary scalar functions.

Therefore, substituting the previous expressions into Equations (9.3) and (9.6), and

using the vector identity

∇×∇×v =∇∇·v −∇2v (9.11)

for a given vector v ∈R3, we obtain:

∇∇·F −∇2F =−J m −baF −a∇U , (9.12)

∇∇· A −∇2 A = J e −ba A −b∇V. (9.13)

As suggested in [45], by imposing the Lorentz conditions on U and V , namely:

∇·F =−aU , (9.14)

∇· A =−bV , (9.15)

Formulas (9.12) and (9.13) reduce to the following Helmholtz equations:

∇2F +k2F = J m , (9.16)

∇2 A +k2 A =−J e , (9.17)

where k2 =−ab.

By introducing the next Fourier Transform pairs:

Ã(kx ,ky ,kz) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
A(x, y, z)e−i [kx x+ky y+kz z]d xd yd z, (9.18)

A(x, y, z) = 1

8π3

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
Ã(kx ,ky ,kz)ei [kx x+ky y+kz z]dkxdky dkz , (9.19)
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F̃ (kx ,ky ,kz) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
F (x, y, z)e−i [kx x+ky y+kz z]d xd yd z, (9.20)

F (x, y, z) = 1

8π3

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
F̃ (kx ,ky ,kz)ei [kx x+ky y+kz z]dkxdky dkz , (9.21)

J̃ e (kx ,ky ,kz) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
J e (x, y, z)e−i [kx x+ky y+kz z]d xd yd z, (9.22)

J e (x, y, z) = 1

8π3

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
J̃ e (kx ,ky ,kz)ei [kx x+ky y+kz z]dkxdky dkz , (9.23)

J̃ m(kx ,ky ,kz) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
J m(x, y, z)e−i [kx x+ky y+kz z]d xd yd z, (9.24)

J m(x, y, z) = 1

8π3

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
J̃ m(kx ,ky ,kz)ei [kx x+ky y+kz z]dkxdky dkz , (9.25)

the computation of the Fourier transformations of (9.16) and (9.17) provides:

Ã = G̃ J̃ e , (9.26)

F̃ =−G̃ J̃ m , (9.27)

where

G̃ = 1

k2
x +k2

y +k2
z −k2

(9.28)

is the Fourier Transform of the Green’s function of the system considered.

Starting from Equations (9.26) and (9.27), integral expressions for the sought-after

vector potentials can be derived as follows:

A(x, y, z) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
G(x −x ′, y − y ′, z − z ′)J e (x ′, y ′, z ′)d x ′d y ′d z ′, (9.29)

F (x, y, z) =−
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
G(x −x ′, y − y ′, z − z ′)J m(x ′, y ′, z ′)d x ′d y ′d z ′, (9.30)

where, according to [45], the Green’s function G(x, y, z) can be explicitly computed

using Hankel functions as follows:

G(x, y, z) = e−i k||r ||2

4π||r ||2
, (9.31)

with r = (x, y, z)T and || · ||2 is the Euclidean norm.
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Therefore, substituting (9.31) into Equations (9.29) and (9.30) yields:

A(x, y, z) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
e−i k||r−r ′||2

4π||r − r ′||2
J e (x ′, y ′, z ′)d x ′d y ′d z ′, (9.32)

F (x, y, z) =−
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
e−i k||r−r ′||2

4π||r − r ′||2
J m(x ′, y ′, z ′)d x ′d y ′d z ′, (9.33)

with r ′ = (x ′, y ′, z ′)T .

Equations (9.32) and (9.33) represent an integral formulation of the vector poten-

tials in terms of the external sources acting on the system. Thus, by specifying these

sources, analytical expressions of the corresponding fields can be obtained. For ex-

ample, considering a single magnetic dipole point source yields the results derived

below.

Let r s = (xs , ys , zs)T be the position of this source having a momentum m = mn̂x ,

where n̂x is the unit vector along the x-direction. Then, starting from the corre-

sponding (non-trivial) Helmholtz equation:

∇2F +k2F = J m = iωµmn̂xδ(r − r s), (9.34)

where δ(·) denotes the Dirac delta function, the application of (9.33) yields the fol-

lowing solution:

F (x, y, z) =− iωµm

4π||r − r s ||2
e−i k||r−r s ||2 n̂x . (9.35)

Thus, the associated analytical expressions of the electromagnetic fields can be de-

rived as shown next:

E =− iωµm

4πξ2
(1+ i kξ)e−i kξ

(
z̃

ξ
n̂ y − ỹ

ξ
n̂z

)
, (9.36)

H =− m

4πξ3
e−i kξ

[(
x̃2

ξ2
n̂x + x̃ ỹ

ξ2
n̂ y + x̃ z̃

ξ2
n̂z

)
(−k2ξ2 +3i kξ+3)+ (k2ξ2 − i kξ−1)n̂x

]
,

(9.37)

where n̂ y , n̂z are the unit vectors along the y and z-directions and, for convenience,

the following notation has been used: ξ= ||r − r s ||2, x̃ = x −xs , ỹ = y − ys , z̃ = z − zs .

Finally, since the field amplitudes should tend to zero in the limit of infinite dis-

tance from the source, due to the presence of the factor e−i kξ in Equations (9.36)

and (9.37), the value of k is selected as the complex root of the parameter k2 =−ab

having negative imaginary part.
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9.2 Appendix: Derivation of the Helmholtz equation from

Maxwell’s equations

This appendix shows how the Helmholtz equation can be derived from Maxwell’s

equations following [236] and [237].

This calculation is important to connect the two forward models used in this thesis

and highlight the assumptions under which a 2D simplification of the original 3D

problem can be attained.

Let us start with Maxwell’s equations in the frequency domain compactly ex-

pressed by Equation (2.9).

Then, assuming the absence of electric static sources and magnetic currents, the

magnetic field can be expressed as:

H(x) =− 1

a
∇×E (x). (9.38)

Considering domains with homogeneous impeditivity and substituting (9.38) into

the Ampere’s law yields:

∇×∇×E +abE =−a J e . (9.39)

Using vector identities and recalling the absence of static electric charge, Equation

(9.39) leads to a Helmholtz equation of the type:

∇2E +k2E = q, (9.40)

where k2 =−ab and q = a J e .

A consistent solution of (9.40) can be attained by considering Transverse Magnetic

(TM) waves, namely such that:

q(x, y, z) = (0, qy (x, z),0)T , (9.41)

E (x, y, z) = (0,Ey (x, z),0)T , (9.42)

H(x, y, z) = (Hx(x, z),0, Hz(x, z))T . (9.43)
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Therefore, a 2D TM simplification of (9.39) can be introduced as follows:

∇2u(x, z)+k2u(x, z) = q(x, z), (9.44)

where u(x, z) = Ey (x, z), k2 =−ab and q(x, z) = qy (x, z).

9.3 Appendix: Additional information on the discretiza-

tion of Maxwell’s equations

The FDFD approximation of Maxwell’s equations is here completed by providing

more information on the discretization matrices introduced in Chapter 2 but not

yet specified. The notation introduced below follows [48].

For a given m cell of the primary grid, the lengths of its edges are denoted as

xm , ym , zm . Therefore, the areas of its surfaces can simply be computed by multi-

plying the previous lengths.

Considering instead a generic m cell of the staggered grid, the corresponding edge

lengths are computed in terms of the parameters of the primary grid as follows:

x̄m = xm+xd
2 , ȳm = ym+yl

2 and z̄m = zm+z f

2 . Similarly, the surface areas associated can

be calculated as:

amx =
ym zm + yl zl + y f z f + yl f zl f

4
,

amy =
xm zm +xd zd +x f z f + yd f zd f

4
,

amz =
ym ym +xd yd +xl yl +xdl ydl

4
.

Notice that, when a uniform grid is chosen, the previous relations simplify to: x̄m =
xm , ȳm = ym , and z̄m = zm .

Since the dielectric permittivity components multiply the electric field approx-

imations evaluated at the centre of the cell edges in Equations (2.14), (2.15), (2.16),

these permittivity values also need to be calculated in the same points. This yields:

ε̄mxx =
ym zmεmxx + yl zlεlxx + y f z f ε fxx + yl f zl f εl fxx

4
,
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ε̄my y =
xm zmεmy y +xd zdεdy y +x f z f ε fy y +xd f zd f εd fy y

4
,

ε̄mzz =
xm ymεmzz +xd ydεdzz +xl ylεlzz +xdl ydlεdlzz

4
.

Conversely, the magnetic permeability components need to be evaluated at the cen-

tre of the cell surfaces since they multiply the magnetic field approximations in

Equations (2.17), (2.18) and (2.19). This yields:

µ̄mxx =
µmxxµdxx (xm +xd )

xmµdxx +xdµmxx

,

µ̄my y =
µmy yµly y (ym + yl )

ymµly y + ylµmy y

,

µ̄mzz =
µmzzµ fzz (zm + z f )

zmµ fzz + z f µmzz

.

The structures of the remaining diagonal matrices introduced are specified be-

low:

Dl = Di ag (..., zm , ym , xm , ...),

D l̄ = Di ag (..., z̄m , ȳm , x̄m , ...),

D A = Di ag (..., xm ym , xm zm , ym zm , ...),

D Ā = Di ag (..., amz , amy , amx , ...),

D Aε = Di ag (..., ε̄mzz , ε̄my y , ε̄mxx , ...),

Dµ = Di ag (..., µ̄mzz , µ̄my y , µ̄mxx , ...),

DVεε = Di ag (...,Vmz ,Vmy ,Vmx , ...),

where:

Vmα =
1

8

[|εmαα |2xm ym zm +|εdαα |2xd yd zd +|εlαα |2xl yl zl +|ε fαα |2x f y f z f
]+

+1

8

[|εd fαα |2xd f yd f zd f +|εdlαα |2xdl ydl zdl +|εl fαα |2xl f yl f zl f +|εdl fαα |2xdl f ydl f zdl f
]

,

with α= {x, y, z}.

The canonical matrices A and B provide the correct signs in the calculation of

the line integrals according to the orientations illustrated in Figures 2.3 and 2.4. We

refer to [58] for more details on their definition.
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9.4 Appendix: Level set diffusion regularization

This appendix provides more details on the diffusion regularization introduced in

the level set-based reconstruction. The goal is to promote smooth shapes by en-

forcing further regularity constraints. The derivation proposed here follows closely

the review [91].

The main idea of this regularization is to impose a further smoothness constraint

on the level set function. This corresponds to require that φ ∈ W , where W is a

Sobolev space introduced such that:

W =
{
φ : φ ∈ L2(Ω),∇φ ∈ L2(Ω),

∂φ

∂ν

∣∣∣
∂Ω

= 0

}
, (9.45)

where ∂·
∂ν

is the normal derivative.

Consequently, the descent directions δφ originally computed on the space Φ need

to be replaced by their projections on W before updating the level set function.

These projections can be calculated as outlined below.

Given v, w ∈W , let us introduce the following weighted inner product:

〈v, w〉W =α〈v, w〉Φ+β〈∇v,∇w〉Φ , (9.46)

where α ≥ 1 and β > 0 are regularization parameters. Furthermore, let us impose

the next equality: 〈
δφ,T ′(φ)∗ζ

〉
Φ = 〈

δφ,T ′(φ)◦ζ
〉

W , (9.47)

where ζ ∈ Z and T ′(φ)◦ is the level set linearized residual operator projection on W .

Using (9.46) and applying Green’s identities [238], Equation (9.47) can be rewritten

as: 〈
δφ,T ′(φ)∗ζ

〉
Φ =α〈

δφ,T ′(φ)◦ζ
〉
Φ−β

〈
δφ,∆T ′(φ)◦ζ

〉
Φ , (9.48)

where ∆ is the Laplacian operator. Thus, it follows that:

T ′(φ)◦ = (αI −β∆)−1T ′(φ)∗. (9.49)
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The operator (αI −β∆)−1 has the effect of projecting the gradient T ′(φ)∗T (φ) from

the space Φ towards the Sobolev space W . Different choices of the parameters α,β

have the effect of smearing out the original shape updates to a different degree,

yielding eventually smoother boundaries.

A possible numerical implementation of this regularization strategy can be real-

ized through a diffusion equation as discussed next.

For clarity, let us introduce the notation: fr = T ′(φ)◦T (φ) and fd = T ′(φ)∗T (φ).

Then, fr can be seen as the minimizer of the cost functional:

JR ( f ) = α−1

2
|| f ||2L2(Ω) +

β

2
||∇ f ||2L2(Ω) +

1

2
|| f − fd ||2L2(Ω). (9.50)

Therefore, by minimizing the cost (9.50) through the application of a gradient de-

scent method, the evolution of this regularization scheme can be described as:
∂v
∂t −β∆v = fd −αv,

v(0) = fd ,
(9.51)

where t ∈ [0,τ] is a small artificial evolution time. However, numerical experiments

suggest that a simplification of (9.51) can be used to impose a satisfactory smooth-

ing effect. This provides eventually a diffusion-type equation of the form:
∂v
∂t −β∆v = 0,

v(0) = fd .
(9.52)

Notice that Equation (9.52) operates on the updates of the level set function but not

on the level set function itself. For more details on this specific regularization tech-

nique we refer to [239] and [240].

9.5 Appendix: Green’s function for the Helmholtz equa-

tion

In this appendix the unique analytical solution of the 2D Helmholtz equation equipped

with Sommerfeld radiation condition is computed in free space. We clearly state
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that this derivation follows closely the procedure discussed in [241].

Considering a domain Ω = R2 and assuming the presence of a single, unitary

magnitude, point source located at r’ ∈Ω, the computation of the Green’s function

G(r) of (3.1) implies the solution of the following equation:

∇2G(r)+k2
0G(r) =−δ(r− r’), (9.53)

where r,r’ ∈Ω.

By introducing the Fourier Transform pair:

G(r) = 1

(2π)2

∫
R2

G̃(k)e−i k·rdk, (9.54)

G̃(k) =
∫
R2

G(r)e+i k·rdr, (9.55)

with r = (x, y)T , k = (kx ,ky )T , the application of (9.54) to (9.53) yields:

(−k2
x −k2

y +k2
0)G̃(k) =−e+i k·r’, (9.56)

or, equivalently:

G̃(k) = e+i k·r’

k2
x +k2

y −k2
0

. (9.57)

Therefore, using (9.54), we have:

G(r) = 1

(2π)2

∫
R2

e−i k·(r−r’)

k2
x +k2

y −k2
0

dk. (9.58)

According to [241], we suitably choose the axis kx in the opposite direction to the

vector r− r’. This results in the following simplification:

k · (r− r’) =−kxρ, (9.59)

with ρ = ||r− r’||2. Therefore, Equation (9.58) can be rewritten as

G(r) = 1

(2π)2

∫ +∞

−∞
e+i kxρ I (kx)dkx , (9.60)
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where

I (kx) =
∫ +∞

−∞

dky

k2
x +k2

y −k2
0

. (9.61)

The advantage of this formulation is that it allows the computation of the integral

I (kx) by using contour integrals in the ky complex plane. This is realised next.

Firstly, we notice that if we close the contour with a semicircle of radius R → ∞
through the upper or lower half-plane, in both cases, this contribution tends to zero.

Secondly, analysing the integrand function

f (ky ) = 1

k2
x +k2

y −k2
0

, (9.62)

it is straightforward to identify two simple poles at ky =±i
√

k2
x −k2

0 . Hence, to fur-

ther progress, we distinguish three cases:

i ) |kx | > k0,

i i ) |kx | < k0,

i i i ) |kx | = k0.

Each of these cases is singularly addressed in the following.

Let us start by considering case i ). Here, the two poles are located along the

imaginary axis. Thus, adopting the closed contour illustrated in Figure 9.1, we com-

pute I (kx) as follows:

I (kx) =+2πi Res

(
f (ky ),ky =+i

√
k2

x −k2
0

)
= π√

k2
x −k2

0

. (9.63)

In Equation (9.63), Res
(

f (ky ),ky =+i
√

k2
x −k2

0

)
denotes the residual of f (ky ) eval-

uated at ky =+i
√

k2
x −k2

0 .
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Re

Im

P

Figure 9.1: Closed contour considered in case i ). The simple poles ky =
±i

√
k2

x −k2
0 are illustrated on the imaginary axis. The orientation of the

path is indicated by the arrow.

Case i i ) differs from the previous one because the two poles ky =±
√

k2
0 −k2

x are

here located on the real axis. See Figure 9.2.

Re

Im

P++

Re

Im

P+−

Re

Im

P−−

Re

Im

P−+

Figure 9.2: Closed contours considered in case i i ). The two poles ky =
±

√
k2

0 −k2
x are illustrated on the real axis. The orientations of the paths

are indicated by the arrows.

Evaluating the residuals as before, since the Cauchy Principal Values around
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these poles are null, the calculation of I (kx) yields:

I (kx) =



0, on P++ and P−−,

+ iπ√
k2

0−k2
x

, on P−+,

− iπ√
k2

0−k2
x

, on P+−.

(9.64)

Thus, in case i i ), the result of the contour integration depends on the path adopted.

For the moment, we consider all these solutions and the selection of a specific one

will be made later according to physical considerations.

In case i i i ) the integrand function simplifies to f (ky ) = 1
k2

y
and the computation

of I (kx) gives a null value.

Combining the previous results, the Green’s function G(r) can be computed as

follows:

G(r) = 1

(2π)2

∫ +∞

−∞
e+i kxρ I (kx)dkx =

1

(2π)2

∫
|kx |>k0

πe+i kxρ√
k2

x −k2
0

dkx ±
∫
|kx |<k0

iπe+i kxρ√
k2

0 −k2
x

dkx

 . (9.65)

Equation (9.65) can be simplified by noticing that all odd integrand terms yield null

contributions since both integration domains are symmetric with respect to the ori-

gin. Therefore, we have:

G(r) = 1

(2π)2

2π
∫ +∞

k0

cos(kxρ)√
k2

x −k2
0

dkx ±2πi
∫ k0

0

cos(kxρ)√
k2

0 −k2
x

dkx

 . (9.66)

Recalling the definition of the Bessel function of the second kind order zero Y0 and

of the Bessel function of the first kind order zero J0, Equation (9.65) can be com-

pactly rewritten as

G(r) = i

4

[±J0(k0ρ)+ i Y0(k0ρ)
]=


i
4 H (1)

0 (k0ρ), for the plus sign,

− i
4 H (2)

0 (k0ρ), for the minus sign,
(9.67)

where H (1)
0 and H (2)

0 are the Hankel functions of zero-order of the first and second
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kind respectively.

Finally, the imposition of the Sommerfeld radiation condition (3.4) singles the solu-

tion with the plus sign. Hence, the sought-after Green’s function is eventually given

by the next formula:

G(r) = i

4
H (1)

0 (k0||r− r’||2). (9.68)

We conclude this appendix with the following observation. When considering mul-

tiple point sources, the generated global field can be determined by specifying Equa-

tion (9.68) for each antenna singularly and consequently applying the superimpo-

sition principle [229].

9.6 Appendix: Validation of the forward models

In this appendix we validate the numerical solvers introduced in Chapter 2 and 3

against the analytical solutions in free space derived in Appendix 9.1 and 9.5. In

both cases, a single point-dipole magnetic antenna is considered and placed in the

centre of the domain schematized. For completeness, we specify that the simula-

tions discussed in this section are performed on a workstation equipped with an

Intel Xeon 3.40GHz CPU.

We start by considering the 2D Helmholz model. Here, a comparison between

numerical outcomes and analytical predictions is made at the pixel level by defining

the following approximation error:

Er = ||uT −uN ||2
||uT ||2

, (9.69)

where uT = (uT (1), . . . ,uT (I ))T , uN = (uN (1), . . . ,uN (I ))T , and uT (i ), uN (i ) denote

the analytical (i.e. theoretical) and numerical estimates of the field in correspon-

dence of the i-th pixel respectively. This comparison is performed on each voxel of

the discretized domain excluding the PML regions and a 0.2m radius disk centred

in the source antenna. In addition, to test the effects of the adopted FDFD approxi-

mation, we study how the error Er changes when the pixel edge length is modified.

This is practically realized by fixing the physical dimension of the considered setup

to 8m× 4m and increasing the number of total modelled pixels by reducing their

edge length. This provides the results shown in Figure 9.3.
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Figure 9.3: To the left: Approximation error against pixel edge length. To
the right: Computation time required to numerically solve the forward
model against pixel edge length. The trends in green, blue, red and black
refer respectively to the following frequency values: 25MHz, 100MHz,
300MHz, 500MHz.

Figure 9.3 shows that the discrepancy between analytical and numerical out-

comes reduces as the pixels shrink. As expected, the smaller the domain discretiza-

tion, the lower the approximation error. However, since the physical size of the

setup modelled is fixed, small edge lengths correspond to large numbers of pixels

thus increasing computational costs. Therefore, a trade-off is sought here. Namely,

a pixel size of 2cm×2cm is assumed as the default option. Consequently, with ref-

erence to the frequencies investigated, this choice leads to a maximum approxima-

tion error of roughly 4% and a maximum computation time of roughly 3.5s. Overall,

these positive results in free space make us confident that the considered forward

model can be used reliability even when inhomogeneous domains are adopted.

The validation of the 3D Maxwell’s solver is accomplished in a similar way to

what was discussed above. We consider a setup that includes 40× 40× 40 voxels,

each with an edge length of 1m, surrounded by a (10 voxels) PML region analo-

gously to what was described in Chapter 2. Thus, we place a single point-dipole

magnetic source in the centre of the domain and compute the approximation er-

ror Er by comparing the analytical and numerical estimates of the electric field at

the pixel level. The voxel in which the source is located and its first neighbours are

neglected in this calculation. Similarly, the PML region is also excluded. A single

frequency equal to 100kHz is considered. Eventually, this comparison provides the
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results shown in Table 9.1 and 9.2.

Algorithm Er (%) ∆t (s)

BiCGSTAB 7.38 4.71

BiCG 6.04 4.72

GMRES 5.19 97.14

Table 9.1: Approximation errors and computation times corresponding
to the BiCGSTAB, BiCG and GMRES algorithms.

Edge Length (m) Er (%) ∆t (s)

10.0 9.57 4.44

5.0 8.08 4.63

1.0 7.38 4.71

0.5 8.09 5.02

Table 9.2: Approximation errors and computation times associated with
different voxel edge lengths (using BiCGSTAB).

As discussed in Chapter 2, the selection of a suitable method for the numerical

solution of the linear system given by the FDFD approximation is crucial. Table 9.1

shows that GMRES is associated with the lowest error value but requires large com-

putation costs. Following [48] and guided by the attempt to balance numerical effi-

ciency and stability, we select BiCGSTAB as the default algorithm for the Maxwell’s

forward model. Table 9.2 summarizes an analysis of how the approximation error

and computation time change when the voxel edge length is modified.

We conclude this appendix with the following observation. One of the reasons

that motivated the introduction of the 2D Helmholtz solver was the need to over-

come the numerical limitations of the Maxwell’s model. However, a simple compar-

ison of the corresponding computation times shows similar costs. In order to jus-

tify that statement, as mentioned in Chapter 3, we should recall that the Helmholtz

model is implemented in such a way that it is able to compute an approximation of

the fields corresponding to all sources considered individually but simultaneously.

This is not the case with the Maxwell’s solver. Consequently, this results in a signif-

icant difference in the computational complexity of the reconstruction algorithms
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when investigated in 2D or 3D.
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