1,218 research outputs found

    Using Execution Transactions To Recover From Buffer Overflow Attacks

    Get PDF
    We examine the problem of containing buffer overflow attacks in a safe and efficient manner. Briefly, we automatically augment source code to dynamically catch stack and heap-based buffer overflow and underflow attacks, and recover from them by allowing the program to continue execution. Our hypothesis is that we can treat each code function as a transaction that can be aborted when an attack is detected, without affecting the application's ability to correctly execute. Our approach allows us to selectively enable or disable components of this defensive mechanism in response to external events, allowing for a direct tradeoff between security and performance. We combine our defensive mechanism with a honeypot-like configuration to detect previously unknown attacks and automatically adapt an application's defensive posture at a negligible performance cost, as well as help determine a worm's signature. The main benefits of our scheme are its low impact on application performance, its ability to respond to attacks without human intervention, its capacity to handle previously unknown vulnerabilities, and the preservation of service availability. We implemented a stand-alone tool, DYBOC, which we use to instrument a number of vulnerable applications. Our performance benchmarks indicate a slow-down of 20% for Apache in full-protection mode, and 1.2% with partial protection. We validate our transactional hypothesis via two experiments: first, by applying our scheme to 17 vulnerable applications, successfully fixing 14 of them; second, by examining the behavior of Apache when each of 154 potentially vulnerable routines are made to fail, resulting in correct behavior in 139 of cases

    Computing homomorphic program invariants

    Get PDF
    Program invariants are properties that are true at a particular program point or points. Program invariants are often undocumented assertions made by a programmer that hold the key to reasoning correctly about a software verification task. Unlike the contemporary research in which program invariants are defined to hold for all control flow paths, we propose \textit{homomorphic program invariants}, which hold with respect to a relevant equivalence class of control flow paths. For a problem-specific task, homomorphic program invariants can form stricter assertions. This work demonstrates that the novelty of computing homomorphic program invariants is both useful and practical. Towards our goal of computing homomorphic program invariants, we deal with the challenge of the astronomical number of paths in programs. Since reasoning about a class of program paths must be efficient in order to scale to real-world programs, we extend prior work to efficiently divide program paths into equivalence classes with respect to control flow events of interest. Our technique reasons about inter-procedural paths, which we then use to determine how to modify a program binary to abort execution at the start of an irrelevant program path. With off-the-shelf components, we employ the state-of-the-art in fuzzing and dynamic invariant detection tools to mine homomorphic program invariants. To aid in the task of identifying likely software anomalies, we develop human-in-the-loop analysis methodologies and a toolbox of human-centric static analysis tools. We present work to perform a statically-informed dynamic analysis to efficiently transition from static analysis to dynamic analysis and leverage the strengths of each approach. To evaluate our approach, we apply our techniques to three case study audits of challenge applications from DARPA\u27s Space/Time Analysis for Cybersecurity (STAC) program. In the final case study, we discover an unintentional vulnerability that causes a denial of service (DoS) in space and time, despite the challenge application having been hardened against static and dynamic analysis techniques

    Security analyses for detecting deserialisation vulnerabilities : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science at Massey University, Palmerston North, New Zealand

    Get PDF
    An important task in software security is to identify potential vulnerabilities. Attackers exploit security vulnerabilities in systems to obtain confidential information, to breach system integrity, and to make systems unavailable to legitimate users. In recent years, particularly 2012, there has been a rise in reported Java vulnerabilities. One type of vulnerability involves (de)serialisation, a commonly used feature to store objects or data structures to an external format and restore them. In 2015, a deserialisation vulnerability was reported involving Apache Commons Collections, a popular Java library, which affected numerous Java applications. Another major deserialisation-related vulnerability that affected 55\% of Android devices was reported in 2015. Both of these vulnerabilities allowed arbitrary code execution on vulnerable systems by malicious users, a serious risk, and this came as a call for the Java community to issue patches to fix serialisation related vulnerabilities in both the Java Development Kit and libraries. Despite attention to coding guidelines and defensive strategies, deserialisation remains a risky feature and a potential weakness in object-oriented applications. In fact, deserialisation related vulnerabilities (both denial-of-service and remote code execution) continue to be reported for Java applications. Further, deserialisation is a case of parsing where external data is parsed from their external representation to a program's internal data structures and hence, potentially similar vulnerabilities can be present in parsers for file formats and serialisation languages. The problem is, given a software package, to detect either injection or denial-of-service vulnerabilities and propose strategies to prevent attacks that exploit them. The research reported in this thesis casts detecting deserialisation related vulnerabilities as a program analysis task. The goal is to automatically discover this class of vulnerabilities using program analysis techniques, and to experimentally evaluate the efficiency and effectiveness of the proposed methods on real-world software. We use multiple techniques to detect reachability to sensitive methods and taint analysis to detect if untrusted user-input can result in security violations. Challenges in using program analysis for detecting deserialisation vulnerabilities include addressing soundness issues in analysing dynamic features in Java (e.g., native code). Another hurdle is that available techniques mostly target the analysis of applications rather than library code. In this thesis, we develop techniques to address soundness issues related to analysing Java code that uses serialisation, and we adapt dynamic techniques such as fuzzing to address precision issues in the results of our analysis. We also use the results from our analysis to study libraries in other languages, and check if they are vulnerable to deserialisation-type attacks. We then provide a discussion on mitigation measures for engineers to protect their software against such vulnerabilities. In our experiments, we show that we can find unreported vulnerabilities in Java code; and how these vulnerabilities are also present in widely-used serialisers for popular languages such as JavaScript, PHP and Rust. In our study, we discovered previously unknown denial-of-service security bugs in applications/libraries that parse external data formats such as YAML, PDF and SVG

    Annotation-Based Static Analysis for Personal Data Protection

    Full text link
    This paper elaborates the use of static source code analysis in the context of data protection. The topic is important for software engineering in order for software developers to improve the protection of personal data during software development. To this end, the paper proposes a design of annotating classes and functions that process personal data. The design serves two primary purposes: on one hand, it provides means for software developers to document their intent; on the other hand, it furnishes tools for automatic detection of potential violations. This dual rationale facilitates compliance with the General Data Protection Regulation (GDPR) and other emerging data protection and privacy regulations. In addition to a brief review of the state-of-the-art of static analysis in the data protection context and the design of the proposed analysis method, a concrete tool is presented to demonstrate a practical implementation for the Java programming language

    Countering Code Injection Attacks With Instruction Set Randomization

    Get PDF
    We describe a new, general approach for safeguarding systems against any type of code-injection attack. We apply Kerckhoff's principle, by creating process-specific randomized instruction sets (e.g., machine instructions) of the system executing potentially vulnerable software. An attacker who does not know the key to the randomization algorithm will inject code that is invalid for that randomized processor, causing a runtime exception. To determine the difficulty of integrating support for the proposed mechanism in the operating system, we modified the Linux kernel, the GNU binutils tools, and the bochs-x86 emulator. Although the performance penalty is significant, our prototype demonstrates the feasibility of the approach, and should be directly usable on a suitable-modified processor (e.g., the Transmeta Crusoe).Our approach is equally applicable against code-injecting attacks in scripting and interpreted languages, e.g., web-based SQL injection. We demonstrate this by modifying the Perl interpreter to permit randomized script execution. The performance penalty in this case is minimal. Where our proposed approach is feasible (i.e., in an emulated environment, in the presence of programmable or specialized hardware, or in interpreted languages), it can serve as a low-overhead protection mechanism, and can easily complement other mechanisms

    Hailstorm : A Statically-Typed, Purely Functional Language for IoT Applications

    Get PDF
    With the growing ubiquity of Internet of Things (IoT), more complex logic is being programmed on resource-constrained IoT devices, almost exclusively using the C programming language. While C provides low-level control over memory, it lacks a number of high-level programming abstractions such as higher-order functions, polymorphism, strong static typing, memory safety, and automatic memory management.We present Hailstorm, a statically-typed, purely functional programming language that attempts to address the above problem. It is a high-level programming language with a strict typing discipline. It supports features like higher-order functions, tail-recursion and automatic memory management, to program IoT devices in a declarative manner. Applications running on these devices tend to be heavily dominated by I/O. Hailstorm tracks side effects like I/O in its type system using resource types. This choice allowed us to explore the design of a purely functional standalone language, in an area where it is more common to embed a functional core in an imperative shell. The language borrows the combinators of arrowized FRP, but has discrete-time semantics. The design of the full set of combinators is work in progress, driven by examples. So far, we have evaluated Hailstorm by writing standard examples from the literature (earthquake detection, a railway crossing system and various other clocked systems), and also running examples on the GRiSP embedded systems board, through generation of Erlang
    • …
    corecore