1,233,740 research outputs found
Stochastic Properties of Static Friction
The onset of frictional motion is mediated by rupture-like slip fronts, which
nucleate locally and propagate eventually along the entire interface causing
global sliding. The static friction coefficient is a macroscopic measure of the
applied force at this particular instant when the frictional interface loses
stability. However, experimental studies are known to present important scatter
in the measurement of static friction; the origin of which remains unexplained.
Here, we study the nucleation of local slip at interfaces with slip-weakening
friction of random strength and analyze the resulting variability in the
measured global strength. Using numerical simulations that solve the
elastodynamic equations, we observe that multiple slip patches nucleate
simultaneously, many of which are stable and grow only slowly, but one reaches
a critical length and starts propagating dynamically. We show that a
theoretical criterion based on a static equilibrium solution predicts
quantitatively well the onset of frictional sliding. We develop a Monte-Carlo
model by adapting the theoretical criterion and pre-computing modal convolution
terms, which enables us to run efficiently a large number of samples and to
study variability in global strength distribution caused by the stochastic
properties of local frictional strength. The results demonstrate that an
increasing spatial correlation length on the interface, representing geometric
imperfections and roughness, causes lower global static friction. Conversely,
smaller correlation length increases the macroscopic strength while its
variability decreases. We further show that randomness in local friction
properties is insufficient for the existence of systematic precursory slip
events. Random or systematic non-uniformity in the driving force, such as
potential energy or stress drop, is required for arrested slip fronts. Our
model and observations..
Synthesizing Short-Circuiting Validation of Data Structure Invariants
This paper presents incremental verification-validation, a novel approach for
checking rich data structure invariants expressed as separation logic
assertions. Incremental verification-validation combines static verification of
separation properties with efficient, short-circuiting dynamic validation of
arbitrarily rich data constraints. A data structure invariant checker is an
inductive predicate in separation logic with an executable interpretation; a
short-circuiting checker is an invariant checker that stops checking whenever
it detects at run time that an assertion for some sub-structure has been fully
proven statically. At a high level, our approach does two things: it statically
proves the separation properties of data structure invariants using a static
shape analysis in a standard way but then leverages this proof in a novel
manner to synthesize short-circuiting dynamic validation of the data
properties. As a consequence, we enable dynamic validation to make up for
imprecision in sound static analysis while simultaneously leveraging the static
verification to make the remaining dynamic validation efficient. We show
empirically that short-circuiting can yield asymptotic improvements in dynamic
validation, with low overhead over no validation, even in cases where static
verification is incomplete
Priority Queues with Multiple Time Fingers
A priority queue is presented that supports the operations insert and
find-min in worst-case constant time, and delete and delete-min on element x in
worst-case O(lg(min{w_x, q_x}+2)) time, where w_x (respectively q_x) is the
number of elements inserted after x (respectively before x) and are still
present at the time of the deletion of x. Our priority queue then has both the
working-set and the queueish properties, and more strongly it satisfies these
properties in the worst-case sense. We also define a new distribution-sensitive
property---the time-finger property, which encapsulates and generalizes both
the working-set and queueish properties, and present a priority queue that
satisfies this property.
In addition, we prove a strong implication that the working-set property is
equivalent to the unified bound (which is the minimum per operation among the
static finger, static optimality, and the working-set bounds). This latter
result is of tremendous interest by itself as it had gone unnoticed since the
introduction of such bounds by Sleater and Tarjan [JACM 1985]. Accordingly, our
priority queue satisfies other distribution-sensitive properties as the static
finger, static optimality, and the unified bound.Comment: 14 pages, 4 figure
Observation of String Breaking in QCD
We numerically investigate the transition of the static quark-antiquark
string into a static-light meson-antimeson system. Improving noise reduction
techniques, we are able to resolve the signature of string breaking dynamics
for n_f=2 lattice QCD at zero temperature. This result can be related to
properties of quarkonium systems. We also study short-distance interactions
between two static-light mesons.Comment: 27 pages, 22 figures, changed decimal place of errors in 3 entries of
Table, corrected reference
Stability of the solutions of the Gross-Pitaevskii equation
We examine the static and dynamic stability of the solutions of the
Gross-Pitaevskii equation and demonstrate the intimate connection between them.
All salient features related to dynamic stability are reflected systematically
in static properties. We find, for example, the obvious result that static
stability always implies dynamic stability and present a simple explanation of
the fact that dynamic stability can exist even in the presence of static
instability.Comment: 7 pages, 1 figur
The unified Skyrmion profiles and Static Properties of Nucleons
An unified approximated solution for symmetric Skyrmions was proposed for the
SU(2) Skyrme model for baryon numbers up to 8,which take the hybrid form of a
kink-like solution and that given by the instanton method. The Skyrmion
profiles are examined by computing lowest soliton energy as well as the static
properties of nucleons within the framework of collective quantization, with a
good agreement with the exact numeric results. The comparisons with the
previous computations as well as the experimental data are also given.Comment: 6 pages, 3 figures, 3 tables, Created by LaTex Syste
Static and dynamic properties of shell-shaped condensates
Static, dynamic, and topological properties of hollow systems differ from
those that are fully filled as a result of the presence of a boundary
associated with an inner surface. Hollow Bose-Einstein condensates (BECs)
naturally occur in various ultracold atomic systems and possibly within neutron
stars but have hitherto not been experimentally realized in isolation on Earth
because of gravitational sag. Motivated by the expected first realization of
fully closed BEC shells in the microgravity conditions of the Cold Atomic
Laboratory aboard the International Space Station, we present a comprehensive
study of spherically symmetric hollow BECs as well as the hollowing transition
from a filled sphere BEC into a thin shell through central density depletion.
We employ complementary analytic and numerical techniques in order to study
equilibrium density profiles and the collective mode structures of condensate
shells hosted by a range of trapping potentials. We identify concrete and
robust signatures of the evolution from filled to hollow structures and the
effects of the emergence of an inner boundary, inclusive of a dip in
breathing-mode-type collective mode frequencies and a restructuring of surface
mode structure across the transition. By extending our analysis to a
two-dimensional transition of a disk to a ring, we show that the collective
mode signatures are an essential feature of hollowing, independent of the
specific geometry. Finally, we relate our work to past and ongoing experimental
efforts and consider the influence of gravity on thin condensate shells. We
identify the conditions under which gravitational sag is highly destructive and
study the mode-mixing effects of microgravity on the collective modes of these
shells.Comment: 26 pages, 13 figure
- …
